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are now being conducted with various axisymmetric configurations to provide the
data that will be used to check the validity of the theoretical predictians.
Some preliminary experimental data are presented in this report. ‘
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Abstract

This report summarizes the work performed during the second year
of an AFOSR sponsored research program that was primarily concerned with
the development of an analytical technique for determining the radiated
sound field from axisymmetric jet engine inlet configurations. The
analytical technique employed is based upon an integral representation of
the external (radiation) solutions of the Helmholtz equation which describe
the sound fields external to a given body under either no flow or constant
velocity flow situations. The integral representation developed during the
course of this research program is different from earlier works in the sense
that it not only yields the correct (unique) solution for all radiation problems
at all frequencies, but that the resulting integral equations contain no strong
(i.e., non-integrable) singularities and therefore can be solved by straight
forward numerical techniques. As part of this research effort two
extremely flexible computer programs were developed for the solution of
these axisymmetric integral equations. These programs can be used for any
closed axisymmetric body with any combination of boundary conditions on
its surface, without any modification of the computer codes, to provide
accurate solutions for the acoustic properties (i.e., the acoustic pressure,
normal velocity, and admittance) both on the body itself and anywhere in the
field surrounding the body. Also, as part of this research effort, experiments
are now being conducted with various axisymmetric configurations tn
provide the data that will be used to check the validity of the theoretical

predictions. Some preliminary experimental

report.
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I. Introduction

This report summarizes the results obtained during the second year
of support under AFOSR contract number F49620-77-C-0066. This contract
was initiated on February 1, 1977 and the results obtained during the first

year of support are contained in AFOSR Interim Scientific Report AFOSR-

TR-78-0696.

The main objective of the research program conducted under this
contract was to develop an analytical technique for predicting the sound
field radiated from axisymmetric jet engine inlet configurations and to
check the validity of these predictions with relevant experimental data. The
development of this analytical solution technique was motivated by the need
for a theoretical approach that could be used to predict the effects of sound
source modifications and of sound suppression devices (such as acoustically
lined surfaces and splitters) upon the sound field radiated from the inlet
without having to resort to costly, full scale experimental testing. The
experimental investigations are necessary not only for comparison with the
results of the analytical technique (which has shown extremely good
agreement with known exact solutions)l’z’” but also to assist in the
determination of the correct analytical form for describing the boundary
conditions necessary to accurately model sound suppression materials in the

computer programs.

* These references were included as appendices of the aforementioned
Interim Scientific Report, AFOSR-TR-78-0696.
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During the first year of this contract the integral equations and
computer programs required for investigating the sound fields radiated from
certain simple geometries were developed. Specifically, two different
formulations of the problem were developed; that is, the full three
dimensional formulation and the axisymmetric formulation. Employing both
these formulations the sound radiation from both a sphere and a finite length
cylinder were investigated. In these studies the effects of different
boundary conditions on the accuracy of the integral solution technique was
investigated by comparing the predictions of this approach for the sound
fields radiated by simple sources with available exact solutions obtained
using the Seperation of Variables Technique (which is only applicable to
simple geometries such as those investigated). This work is described in
detail in three publicationsl’z’3 (See footnote on the previous page.) and it

*
was presented at three conferencesA’B’C

. In summary the first year of
study has shown that the integral solution technique developed under this
contract is both accurate and efficient from a numerical point of view.
During the second year of this contract two general computer
programs were developed for the determination of the acoustic fields both
on and around general axisymmetric bodies with general boundary
conditions. It will be noted here that although the geometry of the bodies
under consideration are constrained to be axisymmetric the allowable
acoustic modes are not; that is, any cylindrically symmetric acoustic mode

which may be present can be solved for using these computer programs.

These programs were written in Extended Fortran IV and they are presented

» Letters refer to the various conference presentations conducted in
connection with this program. These presentations are listed in
Appendix F.

2

- B -~ ——




—

in Appendix A. They have been fully checked out on the Georgia Tech CDC
Cyber 70/74 computer and have been used to theoretically predict the
radiated sound fields that are associated with both lined and unlined straight
ducts and an actual jet engine inlet configuration" shown in Fig. 1.

The details and results of these investigations are described in
References 5 and 6 which are reproduced in Appendices B and C
respectively. The latter of the two papers has also been accepted for
presentation at the AIAA 5th Aeroacoustics Conference in March 1979 in
Seattle, Washington. Probably the most significant results of this
investigation is the result that the optimum theoretical admittance values
found for reducing the sound radiated from a straight duct do not necessarily
have the same effect in a dimensionally similar (i.e., the same length to
diameter ratio) inlet. That is, the geometrical details of an axisymmetric
body need to be taken into consideration when calculating optimum
admittance values for acoustic liners. Another resuit of this investigation is
that the admittance at the entrance plane of a straight duct or an inlet is
not constant in the radial direction. The assumption of a constant
admittance value at the entrance plane of a duct is common to many current
theoretical analyses of the duct radiation problem and thus can be a large
source of error in these analyses.

Since the use of a constant admittance value at the entrance plane
of a duct is so common a series of computer runs were performed to
determine just how accurate this assumption is. The runs were done for a
straight duct configuration and various admittance values were calculated
and compared with certain "classical values". The details of this analysis and

the results are presented in Appendix E. In Appendix E a draft copy of a
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technical note, to be submitted for publication in the AIAA Journal, is
reproduced.

Part of the efforts expended under this contract during the second
year of study were devoted to the development of experimental data that
could be used to check the validity of the accompanying analytical studies.
These efforts consisted of the design and development of appropriate
experimental setups and the conduct of the required experiments, which are
currently in progress. The experimental data acquired under this program is
being compared with corresponding theoretical predictions. Some
preliminary results of these comparisons are now available and they are
presented in Section IV of this report. The work conducted during the
second year of this contract which is not presented in the papers contained

in Appendices B and C is summarized in the following sections.
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II. Analytical Effort

The analytical efforts during the second year of this AFOSR
contract consisted of the development of the general computer programs for
handling axisymmetric geometires and their use to perform certain
parametric studies of interest. The details and results of these studies are
presented in Appendices B, C, and E, and the computer programs themselves
are presented in Appendix A. The programs were developed so that they
could not only be used for parametric analytical studies but also so that
they could easily accept experimental data for any configuation without
any major changes in the computer code. Another part of the analytical
effort was concerned with the determination of the admittance of the liner
which was used in the experimental phase of this program and with the
redesign of the liner for future testing (See Appendix D.).

The initial testing under this program was conducted with an
available acoustic liner which was developed in a related combustion
instability program. This liner was tuned for maximum damping at a
frequency, ~ 740 Hertz, which is above the first tangential (i.e., 1T) mode,
~695 Hz ,of the duct under investigation. Since we are mainly interested in
runing experiments below the 1T cut-off frequency to facilitate both the
data reduction and the comparison of experimental and analytical values all
of the preliminary testing was done in the frequency range 300-650 Hz
which is below the 1T cut-off frequency. Thus, the liner was not expected
to exert much attenuation. Since most of the planned future testing will also
be conducted over a frequency range below the 1T mode of the duct, the
available liner will be retuned to be more effective below the 1T cut-off

frequency. The retuning of the liner is discussed in detail in Appendix D.
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III. Experimental Investigations

The main objective of the experimental phase of this program was to
obtain experimental data that could be readily compared with the
predictions of the analytical models developed under this program.
Specifically, the sound fields radiated from lined and unlined axisymmetric
duct configurations were to be measured and compared with corresponding
theoretical predictions. Since these studies were concerned with the
measurements of the radiated sound fields, all of the required experiments
were conducted in an anechoic chamber whose properties are described in
Fig. 2. A typical experimental setup utilized in the course of this study is
shown in Fig. 3; it consists of a lined axisymmetric duct with a sound source
at one end and an open termination at the other end. The test body (i.e., the
inlet) is placed on one side of the anechoic chamber and an array of
microphones is used to measure the radiated sound field. The latter
consisted of 5 Briel and Kjaer condenser-type microphones. The sound
source was a University driver and it was placed at the throat of a nozzle
that was connected to the axisymmetric body tested as shown in Fig. 4. The
available liner used for the preliminary testing was not specifically designed
for maximum effectiveness in the frequency range where most of the testing
was done. It was tuned for maximum damping at a frequency higher than the
IT mode of the duct under study. It consisted of 180 Helmholtz resonators
(20 radial rows by 9 axial rows) which were closed off during the hard walled
testing (See Appendix D for the admittance calculation). A diagram of the

driver-nozzle-liner set-up and of one of the Helmholtz resonators appears in

Fig. 4.
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This experimental set-up was found to work very well in that the

acoustic waves generated by the driver remained essentially plane up to the
i nozzle-liner interface. This was determined by traversing a 1/4" B&K
; microphone radially across the nozzle-liner interface. This being the case
only a single measurement of the acoustic pressure, which is needed for

input to the analytical computations, was taken at this plane for each test

condition.




IV. Preliminary Experimental Results and Comparisons

Some preliminary experiments have been conducted with the
straight duct configuration shown in Figs. 3 ad 4. Both lined and unlined
configurations were tested; however, not much difference was noted as all
the tests were conducted at frequencies below the first tangential (i.e. 1T)
mode of the duct and therefore in a region where the liner is only marginally
effective as discussed in the previous sections (Also see Appendix D.). Tests
were conducted in the frequency range 300 to 650 Hertz with 50 Hz
increments. The microphones in the field were placed on a circular arc with
a radius of seven feet centered at the entrance plane of the duct (See Figure
3.). The microphones were placed at increments of 11%°  from the
centerline of the duct to 90°.

Comparisons between the experimental results and the theoretical
results were made. Since an experimentally measured value of the sound
pressure level at the nozzle-duct interface was used as input for the
computer programs, the accuracy of the calculated far field can only be
expected to be as good as this measurement. Other sources of error are the
"imperfections" of the anechoic chamber at various frequencies as shown in
Fig. 2, instrumentation errors, and the lack of perfect correspondence
between the experimental and analytical configurations. In this connection it
should be pointed out that the theoretical model employs a spherical
termination at the rear end of the straight duct as shown in Fig. 5. This was
done to improve the efficiency of the computer programs as it has been

shown through theoretical studies that the shape of the termination of the

12
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duct exerts little influence upon the acoustic field in the forward half plane
of the duct.

Comparisons between the measured and calculated results shows r

good qualitative agreement for both the hard walled (i.e., See Fig. 6.) and
the lined (i.e., See Fig. 7.) duct configurations. Good agreement is observed
between the hard walled and lined wall cases in that the errors follow the
same patterns (i.e., Compare Figs. 6 and 7.) which suggest that most of the
observed errors are due to the "non-anechoicness" of the anechoic chamber.

The measured data will be further analyzed in the future and they will be

; published together with additional data collected during the next year of

1
‘
|
'
1

study under this contract.
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Appendix A

o

Computer Programs Developed for this Project

The computer programs described in this appendix were developed

; ' during the second year of this AFOSR research project. They are very

general in that they can be used to find the acoustic properties (i.e., the

e

acoustic potential, normal acoustic velocity, and the admittance) both on
3 the surface and surrounding any finite (closed) axisymmetric body. Also, the
i boundary conditions can be specified at each point on the surface of the
body; the only restriction is that the admittance may not be specified
everywhere on the body as then the solution of the governing integal
equation is non-unique.

The first computer program developed for this project calculates the
surface distributions of the acoustic quantities for a general axisymmetric

configuration. Required inputs for this program are the geometric

description of the  body, the boundary conditions, and the problem
k. specification data (i.e., the mode number of the acoustic wave being solved
for and the wave number). The geometric input data required includes the
p = z coordinates of the points in the center of each integration interval, P,
‘ the two integration points on either side of the center point, Q, the normal
| to the body at the center point, NORMAL, and the length of each
integration interval in the p =z plane, LENGTH. Since the body is assumed to
be axisymmetric the program takes care of choosing the integration points
in the @ direction through the use of a 96 point Gaussian integration

formula.

it
.4
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AT

The boundary conditions are specified in two vectors. The first

vector, ICHECK, specifies what type of boundary condition is known at each

<} known
0% — 5 3 cn/Bn known (A-1)

The second vector, CINDATA, contains the actual complex value of the

point in the p=-z plane.

ICHECK

boundary condition at each point. Finally the problem specification data
consists of specifying the wave number k and the mode number m (i.e. m = 0

is the axisymmetric mode.)

This program prints out all the input data and all the acoustic
quantities on the surface of the body. It also creates an output file which is
read by the next program to calculate the acoustic qualtities in the field

surrounding the body. r

19




PROGRAM EXPCYL ( INPUT, OUTPUT, TAPE10, TAPEli,
. TAPES = INPUT, TAPE6 = OUTPUT)

c

C

CRARREERRE KK EER KK RRERER R KR RER KRR KK KRR EERK KKK KRR KRR ER KR IR X R LT EE
Cx *
Cx *
Cx THIS PROGRAM CALCULATES EITHER THE ACOUSTIC POTENTIAL OR THE *
Cx ACOUSTIC VELOCITY OR THE EFFECTIVE ADMITTANCE ON THE SURFACE *
Cx OF ANY AXISYMMETRIC BODY USEING THE METHOD OF BURTON & MILLER *
Cx WITH MY INTERPRETATION OF THE MOST SINGULAR COMPONENT. *
Cx *
CRa AR K K K K 3 3K N KK RN KK R KK K KK KRR R KK KRR R SRR KR Rk Rk
Cx *
C WILLIAM A. BELL'S OPTIMAL VALUE OF ALPHA (= I/K) IS EMPLOYED. *
Cx *
3k 3K 3 3K 3K 3 S S SR S K O K 3K 3 3K 3K K KR KK K KR K R R SRR KK KRR SRR R R KR K R RR ROk Rk R R kK
Cx *
Ck A CYLINDRICAL FORMULATION OF THE PROBLEM IS EMPLOYED. *
Cx *
Cx *
3 R AR K R K SRR KR KR R OKK KRROR KOK RROR R ROR R OK RO KRR R R K
C

C

REAL K, LENGTH, NORMAL
COMPLEX ALPHA, CEQN, CEXACT, CPHI, CVEL, CY, IK, IKsQ@, TWOPIA,

CINDATA
c
COMMON /1 M, NP, NPPI
COMMON I/ K, PI, TWOPI
COMMON ~/C/ ALPHA, IK, IKSQ, TWOPIA
COMMON ~ID/ ICHECK (162>
COMMON ~RD/ LENGTH (102), NORMAL (102, 2), P (102, 2),
. Q 102, 2, 2)
COMMON ~CD/ CEQN (102, 103), CEXACT (102), CPHI (102), CVEL (102),
. CY (102), CINDATA (102)
COMMON ~/NTCAUSS~/ NCAUST
COMMON ~/CGAUSS~” GAUSNT (48, 2)
C
CALL IRPUT
c
C INTEGER CONSTANTS
c
NPPL = WP + 1
(>
G REAL CONSTANTS
G
TWOPI = 2.0 * PI
C
C COMPLEX CONSTANTS
C
IK = (6.0, 1.0) x K
IKSQ@ = 1K x IK
ALPHA = (0.0, 1.0) 7 K
TWOPIA = ALPHA * TWOPI
CALL EQ@N
C
CALL GAUSS
Cc
CALL OUTPUT
C
STOP "NORMAL"
c
END

20
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REAL K

COMMON
COMMON
COMMON

o IR TR R < |

DATA ((
. sk

"DATA (<
ol

. "DATA ((
7

"DATA ((

DATA PI1

BLOCK DATA

1« M, NP, NPP1
/R K, PI, TWOPI
/NCAUSS~” NGAUST

DATA NP / 102 /

COMMON /GAUSS~/ GAUSNT (48, 2)

7/ 3.1415926535898 /

DATA NGAUST - 48 /

GAUSRT(I, J>, J =
0.01627674484960,
.04881298513605,
.08129749546443,
. 11369535011067,
. 14597371465490,
. 17809688236762,
.21003131046057,
.24174315616384,
.273198812592105,
.30436494435450,
.33520852289263,
.36569686147231,
GAUSNTC(I, J), J =
G.39579764982891,
0.42547898840730,
0.45470942216774,
0.48345797392060,
0.51169417715467,
0.53938610832436,
0.56651041856140,
0.59303236477757,
0.61892584012547,
0.64416340373497,
0.66871831004392,
0.69256453664217,
GAUSNT( I, J), J =
0.71567681234897,
.73803064374449,
.75960234117665,
.78036904386743,
. 300308744139 14,
.81940031073793,
.83762351122819,
.35495903343460,
.87138850590930,
0.88689451740242,
0.920146063531585,
0.91507142312090,
GAUSNTCI, J), J =

OSSO0 SOSOOOe®

OSSOSO

/ 0.92771245672231,

.93937033975276,
. 9500327 1778444,
. 95968829 144874,
.96632682846326 ,
.975939174585 14,
.98251726356301 ,
.98805412632962,
.99254390032376,
0.99598184293721,
0.99836437586318,
9.99968250388323,

2o00COOCS

I. 2, 1 =1, 12)
0.0325506 1449236,
0.03251611871387,
0.03244716371406,
0.03234382256858,
.03226620479463,
.03203445623199,
.63182875889%441,
.03158933077073,
.03131642559686,
.03101033258631,
.03067137612367,
0.03029991542083 /
1, 2>, I = 13, 24
0.02989634413633,
0.02946108995817,
0.02899461415056,
0.02849741106509,
0.0279700076 1685,
0.02741296272603,
0.02682686672559,
0.02621234073567,
0.02557002600535,
0.02490063322248,
0.02420484179236,
0.02348339908593
1, 2y, I = 25, 36)
0.02273706965833,
0.02196664443874,
0.02117293989219,
0.02035679715433,
0.01951908114015,
0.01866067962741,
0.01778250231605,
0.01688547986425,
0.01597056290256,
0.01503872102699,
0.01409094177231,
0.01312822956696
1, 2, 1 = 37, 48)
0.01215160467109,
0.01116210209984,
0.01016077053501,
0.00914867123078,
0.00812687692570,
0.00709647079115,
0.00605854550424,
0.00501420274293,
9.00396455433844,
9.00291073181793,
0.00185396078895,
0.00079679206555 ~

COO0OOOS
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SUBROUTINE (NPUT

REAL K, LENGTH. NORMAL
COMPLEX CEQN, CEXACT,

COMMON
COMMON
COMMON
COMMON

" COMMON

<1/ M, NP, NPP1
/R/ K, PI, TWOPI
/17 ICHECK (1062)
/RD/ LENGTH (102),
Q (102, 2, 2)
/CD/ CEQN (102,
CY (102),
READ (5,

100) ((PCI, J),

READ (5, 100) (((Q(I,
READ (5, 100) ((NORMAL(I,
READ (5, 100) (LENGTH(ID),
1600 FORMAT (8G10.0)

PRINT 101

0 6 6 a 5 6 0

101

, 206X,
4X,

won

CPHI,

1037,
CINDATA (102)

J

J, KK, KK =

27X,

.

25X,

102) QC1, 1,
NORMALCTI,
a1, 2,

WRITE (6,

n

i}
"

,

l'(ll

13,

15X,
2X,

C
102 TFORMAT ("
. " 10X,

“
’

15X,
READ (5, 104) (ICHECK(I),
104 FORMAT (1615)

1100) M,

G20.0)

READ (11, K
1166 FORMAT (120,
READ (11,

RETURN
END

0 a a a a 0

Tor T —
L e o

a

"+Q(RHO,
0,
2),

Fi13.10,

""", Fi3.10,

100) (CINDATACI),

e,

CVEL, CY,

NORMAL (102,
CEXACT (102),

2),

=k, 23, 1 =1,

1, 2),

N, IJ=1, 2),

I = NP)

"

FORMAT ( "1GEOMETRIC INPUT DATA:" ~//
"-Q(RHO,
"N", 21X,

nt 7

"P(RHO,
"LENGTH"
7 AR AR

Qi 1, 2),
1), NORMALCI,
I =1, NP)

" n
L

F13.10,
F13. 10,
F13.10 7

"non
L}

n( II'
H( ll‘

n
’

"
.

I =1, NP)

I 1, NP)

22

CINDATA

E= I,

)", 38X,

I,
2),

Fi3. 10,
'v

F13.10,

e .q;,“’:.a-a RNt

P (102; 2),
CPHI (102), CVEL (162),

NP)
F =

1, 2y, [k 1, NP)

NP)

"NORMAL(RHO, Z)",

PCI, 2,
Qr,

PcI, 1),

LENGTH( 1) , 2, 1,

i
F13.10,

F13.10,

", 21X,
9", 17X,

l)ll / LJ I)

Rl




can
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4

1

C

c
9
8
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C

SUBROUTINE EQN
REAL K, LENGTH, NORMAL, NP1, NP2, NRHOP, NRHOQ, NZP, NZ@

COMPLEX ALPHA, CEQN, CEXACT, CPHI, CVEL, CY, IK, IKSQ,
. TWOPIA, CINDATA
COMMON -1~ M, NP, NPP1
COMMON 7R/ K, PI, TWOPI
COMMON /€~ ALPHA, IK, I1KSQ, TWOPIA
COMMON ~/1D/ ICHECK (102)
COMMON ~RD/ LENGTH (102), NORMAL (102, 2), P (102, 2),

Q (102, 2, 2)

/CD/ CEQN (102, 103), CEXACT (162), CPHI (102), CVEL (102),

" COMMON

CY (102), CINDATA (102)

INITALIZE MATRIX

DOo11=1, NP

DO 2J =1, NPP]
CEQNCI, J) = (0.0, 0.0)
CONTINUE

Pl = P(I, V)

P2 = P(1, 2)

NP1 NORMALCI, 1)

NP2 NORUTALC I, 2)

IF (ICHECK(I)) 3, 4, §

CONTINUE

CEXACTC( 1) = CINDATACD)

CVEL(I) = (0.0, 0.0)

cY(n = (0.0, 0.0)

CEQN( I, NPP1) = TWOPI * CEXACTCI)
CEQN(I, I) = -TWOPIA

GO TO 6

CONTINUE

CEXACT(I) = (0.0, 0.0)

CVEL(I) = CINDATACD)

CY(I) = (0.0, 0.0)

CEQN(I, NPP1) = TWOPIA ¥ CVEL(I)
CE@QN(I, I) = -TWOPI

GO TO 6

CONTINUL

CEXACT(I) = (0.0, 6.0)

CVEL(D) = (0.0, 0.0)

CY(I) = CINDATACD)

CEQNC(I, I) = -TWOPI * (1.0 + ALPHA *x CY(I))
CONTINUE

CONTINUE

X1 INTEGRATION
no7vJ=1, NP

NRHOQ = NORMAL(J, 1)
NZQ = NOR{TAL(J, 2)
GAUSZ = LENGTH(J) * PI

po81-=1, NP

RHOP = P(I, 1)

Zp = PC(I, 2)

NRHOP = NORMAL(I, 1)
NZP = NORMALCI, 2)
pooL-=1, 2

RHOQ = Q(J, L, 1)
Ze = @J, L, 2)

CALL CALC (RHOP, ZP, NRHC¥, NZP, RHOQ, ZQ, NRHOQ, NZQ, GAUSZ,
. I, &)

CONTINUE
CONTINUE
CONTINUE

RETURN
END




ana

0

3

o

4
11
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CEQN( 1, NPP1) = CEQN(I, NPP1) - GAUSZT * (K1 + K2)

CEQN( 1, NPP1) = CEQN(1, NPP1) + GAUSZT * (Il + 12)

—-‘i_——-—-———-—.__...".._“

SUBROUTINE CALC (RHOP, ZP, NRHOP, NZP, RHOQ, ZQ, NRHOQ, NZQ,
GAUSZ, 1, J)

REAL K, NDOTN, NRHOP, NRHOQ, NRHOQP, NZP, NZQ, NZQP
COMPLEX ALPHA, CE@N, CEXACT, CPHI, CVEL, CY, FI, F2, G, GP,
cPP, IK, IKSe, I1, I2, K1, K2, TWOPIA, CINDATA

COMMON 1/ M, NP, NPPI

COMMON /R- K, PI, TWOPI

COMMON ~/C- ALPHA, IK, IKS@, TWOPIA

COMMON 1D/ ICHECK (102)

COMMON /CD/ CEQN ({02, 163), CEXACT (102), CPHI (102), CVEL (102),
CY (102), CINDATA (102)

COMMON /NGAUSS/ NGAUST

COMMON /CAUSS/ GAUSNT (48, 2)

ZD = 71Q - ZP

Z8Q = ZD x ZD

RHOSQ = (RHOQ - RHOP) %*2
RHOQP2 = 2.0 * RHOQ x RHOP
NRHOQP = NRHOQ * NRHOP
NZQP = NZQ x NZP

THETA INTEGRATION

DO 1 IT = 1, NGAUST

THETA = P1 *x GAUSNTC(IT, 1)

IF (1 .EQ. J) THETA = PI * (1.8 - GAUSNTCIT, 1))
GAUSZT = GAUSZ % GAUSNTCIT, 2)

COST = COS (THETA)
COSMT = COS (M * THETA)

R = SQRT (RHOSQ + ZS@ + RHOQP2 x (1.0 - COST))

DRDRQ = (NRHOQ * (RHOQ - RHOP *x COST) + NZQ *x ZD) / R
DRDNP = (NRHOP * (RHOP - RHOQ * COST) — NZP * ZD) / R
NDOTN = NRHOQP *x COST + NZQP

G = RHOQ * CEXP (IK * R) / R
GP = G x (IK- (1.0 / R))
GPP = G % (IKSQ - (3.0 *x IK 7/ R) + (3.6 7/ (R x R)))

it = G * COSMT

12 = ALPHA *x GP * DRDNP *x COSMT

F1 = ALPHA * G *x IKSQ * NDOTN

F2 = ALPHA * (CPP * DRDNP *x DRDN@ - (GP x NDOTN / R)) ‘
K1 = GP x DRDNQ *x COSMT |
K2 = F2 x COSMT [
IF (YCHECK(I) .NE. -1) GO TO 8 |

CEQNCI, NPP1) = CEQN(I, NPP1) + GAUSZT * CEXACT(I) * (F1 + F2)

GO TO 4
CONTINUE

CEQN(T, 1) = CEQNC(I, I) - GAUSZT x (F1 + F2) 1

CONTINUE

IF (ICHECK(J)) 11, 12, 13

CONTINUE

CEQN(1I, J) = CEQN(I, J) - GAUSZT * (I1 + I2)
* CEXACTCJ)

GO TO 14
CONTINUE

CEQNC(I, J) = CEQNC(I, J) + GAUSZT * (Ki + K2)

* CVEL(J)

GO TO s
CONTINUE

CEQN(1, J) = CEQNC(1, J) + GAUSZT * ((Kl + K2) ~
CY()) * (11 + I2))

1
CONT INUE :
CONT I NUE 2% ’
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SUBROUTINE GAUSS
IMPLICIT COMPLEX (C)
COMMON /1 MM, NP, NPP1

COMMON ~CD/ CEQN (162, 103), CEXACT (102), CPHI (102), CVEL (102),

CY (102), CINDATA (102)
UPPER TRIANGULARIZE MATRIX

Do 1J =1, NP

JP1 = J + 1

CSAVE = CEQN (J, J)

CEQN(J, J) = (1.0, 0.0)

DO 2 L = JP1, NPPI

CEQN(J, L) = CEQN(J, L) / CSAVE
CONTINUE

IF (J .FEQ. NP) GO TO 3

PO 4 M = JPL, NP

CSAVE = CEQN(M, J)

Do 5 1 = JP1, NPPI

CEQN(M, ) = CEQN(M, I) - CEQN(J, [) * CSAVE
CONTINUE

CONTINUE

CONTINUE

BACK SUBSTITUTION

CONTINUE

CSUM = (0.0, 0.0)

po6t =1, "¢

NPMI = NP —- 1

NPPIMI = WPMI + 1

CPHICNPPIMI) = CEQN(NPP1MI, NPP1) - CSUM
IF (I .EG. NP) €O TO 7

CSUM = (0.0, 0.0)

DO 8 J =1, I

NPPIMJ = NPPi - J

CSUM = CPHI(NPPIMJ) * CEQN(NPMI, NPPIMJ) + CSUM
CONTINUE

CONTINUE

CONTINUE

RETURN
END

25
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SUBROUTINE OUTPUT

IPHI, K, LENGTH, MADMIT, MEXACT, MPHI, MVELP, MYP,

" COMPLEX ADMIT, ALPHA, CEQN, CEXACT, CPHI, CVEL, CY, IK, IKSQ,
TWOPIA, VELP, CINDATA

COMMON /1~ M, NP, RPP1
COMMON /I K, PI, TWOPI
COMMON ~C~ ALPHA, IK, IKSQ, TWOPIA

ICRECK (102)

LENGTH (102), NORMAL (102, 2), P (102, 2),

Q (102, 2, 2)

CEQN (102, 103), CEXACT (102), CPHI (162), CVEL (102),
CY (102), CINDATA (102)

"COMMON /NGAUSS/ NCAUST

DIMENSION ADMIT (102), VELP (1602), IEXACT (102), IPHI (102),
MADMIT (102), MEXACT (102), MPHI (102), MVELP (102),
MYP (102), PADMIT (102), PEXACT (1062), PPHI (102),
PPVELP ( 102) » PVELM (102), PVELP (162), PYP (102),
REXACT (102), RPHI (102)

c
REAL 1EXACT,
NORMAL

c
COMMON /1D
COMMON /RD./
"COMMON CD/

c

c

EQUIVALENCE

PRINT 100
c
100 FORMAT ¢"1",

(CEQN, ADMIT), (CEQN(1, 2), VELP(1)),
(CEQN(1, 3), IEXACT(1)) (CEQN(1, 4), IPHICD)),
(CE@N(1, 5), MADMIT(1)), (CEQN(1, 6), MEXACT(1)),
(CEQN(I. . MPHIC(D)), (CEQN(1, 8), MVELP(1)),
(CE@NC(1, 9), MYP(1)), (CEQN(1, 10), PADMIT(1)),
(CEQN(1, 11), PEXACT(1)), (CEQN(1, 12), PPHI(1)),
(CEQN(1, 13), PPVELP(1)), (CEQN(1, 14), PVELM(1))
(CE@QN(1, 15), PVELP(1)), '
(CEQNC(1, 17), REXACTC(I1)) )

(CEQN(1, 16), PYP(1))
(CEQNC1, 18), RPHI(ID)

61X, "kExkkREEX" / " ", 61X, "% i

’ 6lxv & IRPUT 2 72 ~ ", 61X, "% %" 7/
« 61X, “RREERRRRR® 2777 * W5 19X,

"“EFFECTIVE ADMITTANCE", 20X, "ACOUSTIC VELOCITY", 22X,
"ACOUSTIC POTENTIAL" 7/ " ")

10 0 N S S
REXACTC 1)
IEXACT( 1)
MEXACTC I)
PEXACTC ID

uwnun

IF (MEXACT(I) .NE. 0.0) PEXACT(I) = ATAN2 (IEXACT(I), REXACT(I))
MVELPCI) = CABS (CVEL(I))
PVELP(I) = 0.0

IF (MVELPCI)

MYP(1) = CABS (CY(ID))
PYPC(I) = 0.0

.NE. 0.0) PYP(I) = ATANZ2 (AIMAG (CY(I)), REAL (CY(I}))
IF (ICHECK(D)) 3, 4, § }

IF (MYPCD)
3 CONTINUE
c

WRITE (6, 101) I, CEXACT(I)

C
101 FORMAT (" ",
c

GO TO 22
4 CONTINUE
C

WRITE (6, 102) I, CVELCI)

c
102 FORMAT (" “,
c
GO TO 22
] CONTINUE
C

WRITE (6, 103) I, CY(D)

c
1603 FORMAT (" ",
C
22 CONTINUE
1 CONTINUE
NGAUSZ = 2

NGAUST = 2 *x NGAUST

NP

REAL (CEXACT(I))
AIMAG (CEXACT(I))
CABS (CEXACT( 1))
0.0

.NE. 06.0) PVELP(I) = ATAN2 (AIMAG (CVEL(I)),
REAL (CVEL(1)))

13, 88, "(", Fi13.10, *,", Fi13.10, ) ")

I8, 49X, *(", Fi13.10, *,*, Fi18.10, 2%

18, 9X, "(*, F13.10, ",", F18.10, "))
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X

104

(>
105

c
107

"CPHIC D

WRITE (6, 104) K, M, ALPHA, NGAUSZ, NGAUST

FORMAT ( "1 INPUT FOR THIS CASE IS8:" ///

. 25X, 'K =*, Fl10.6, 85X, "M =", I3, 6X, "ALPHA = (°,
F3.1, ", " F10.6, ")* /7
* % 14X, "NUMBER OF INTEGRATION POINTS IN THE XI DIRECT",
“ION =", I8, ~/
“ % 14X, "NUMBER OF GAUSSIAN POINTS IN THE THETA DIRECT",
“ION =", 15, " (GAUSS - LEGENDRE)")

PRINT 105

FORMAT ( "1THE CALCULATED SURFACE DISTRIBUTIONS OF THE ACOUSTIC P*,

"OTENT1AL, THE ACOUSTIC VELOCITY, AND THE EFFECTIVE ADMI",
"TTANCE ARE:" ////

* N", 11X, "P(RHO, Z)", 14X, "PHI/COS(M*xTHETA)", 20X,
"VEL/COS(MXTHETA) *, 18X, “EFFECTIVE ADMITTNACE" // * *)

DO61= 1, NP

IF (ICHECK(ID)) 7, 8, 9

CONTINUE

VELP(I) = CPHICD)

PVELM(I) = CABS (VELP(I))

PPVELP(I) = 0.0

IF (PVELM(1) .NE. 0.0) PPVELP(I) = ATAN2 (AIMAG (VELP(I)),
REAL (VELP(I)))

= CEXACT(ID)
RPHICI) = REAL (CPHI(I))
IPHICI) = AIMAG (CPHICI))
MPHICI) = CABS (CPHIC(I))
PPHI(1) = 0.0

IF (MPHICI) .NE. 0.0) PPHICI) = ATAN2 C(IPHICI), RPHICD))
ADMITCI) = VELP(I) ~ CPHI(D)

IF (MPHICI) .EQ. 0.0) ADMIT(I) = (0.0, 0.0)

MADMITC 1) = CABS C(ADMIT(I))

PADMIT(I) = 0.0

IF (MADMITC(I) .NE. 0.0) PADMITC[) = ATANZ (AIMAG (ADMIT(I}},

REAL C(ADMIT(I)))
WRITE (6, 106) 1, PCI, 1), PC(I, 2), VELP(D), ADMITCI)

FORMAT (" ", I3, 7X, “(", F5.3, ",", F6.3, ")*, 44X, 2CG13.5, 10X,

2G13.5)
GO TO 10
CONT INUE
RPHICI) = REAL (CPHICID))
IPOICI) = AIMAG (CPHICID))
MPHICI) = CABS (CPHICI))
PPHICID) = 0.0

IF (MPHICI) .NE. 0.0) PPHICI) = ATAN2 (IPHIC(ID), RPHICI))

VELP(I) = CVEL(ID)

PVELM(I) = CABS (VELP(D))

PPVELP(I) = 0.0

IF (PVELM( ) .NE. 0.0) PPVELP(I) = ATAN2 (AIMAG (VELP(D)),
REAL (VELP(I)))

"ADMITCI) = VELPCI) ~ CPHICD

MADMIT( [) = CABS (ADMITC(1))
PADMIT(I) = 0.0

IF (MADMIT(I) .NE. 0.0) PADMITC(I) = ATAN2 (AIMAG (ADMIT(ID)),

REAL (ADMIT(I1)))
WRITE (6, 107) I, PcI, 1), P(I, 2), CPHICD), ADMIT(D)

FORMAT (" ", I3, 7X, "(", F§.3, ",", F6.3, " ", 8X, 2G13.5, 46X,

2G13.5)

27
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17

114

18

115

19

116

16

"ADMITCD = €Y(D)

T i —— endunant

GO TO 10

CONTINUE

RPHICI) = REAL (CPHICI))
IPHICI) = AIMAG (CPHICD))
MPHIICI) = CABS (CPHICI))
PPHICI) = 0.0

{F (MPHICI) .NE. 0.0) PPHICI) = ATAN2 (IPHICI), RPHICD))
VELP(1) = CPHICI) % CY(I)

PVELM( 1) = CABS (VELP(I))

PPVELP(I) = 0.0

IF (PVELM(I) .NE. 0.06) PPVELP(I) = ATAN2 (AIMAG (VELP(I)),
REAL (VELP(I)))

CABS (ADMIT( D))

0.0

) .NE. 0.0) PADMIT(I) = ATAN2 (AIMAG (ADMIT(I)),
REAL C(ADMITC(I)))

MADMITCI) =
PADMITCI) =
IF (MADMITCI

WRITE (6, 108) I, PCcI, 1), PCI, 2), CPHICD), VELP(ID)

FORMAT ¢* *, I8, 7X, "(", F5.8, ",", F6.3, ")", 8X, 2G13.5, 10X,

2G13.5)

CONTINUE
CONTINUE

PRINT 113

FORMAT ( "ITHE MODULUS OF THE ACOUSTIC POTENTIAL, THE ACOUSTIC VE",

"LOCITY, AND THE EFFECTIVE ADMITTANCE ARE:" ////

" N", 11X, "P(RHO, Z)", 14X, "PHI/COS(MxTHETA)", 20X,

"VEL/COS(MXTHETA) ", 18X, “EFFECTIVE ADMITTANCE" ~/

“ v, 36X, "EXACT CALC", 20X, "EXACT CALC",
20X, "EXACT CALC* 27 * %)

DO 16 I = 1, NP
IF (ICHECK(I)) 17, 18, 19
CONTINUE

WRITE (6, 114) I, P(I, 1), PC(I, 2), MEXACT(1), MVELP(I), PVELM(D),

MYP( 1), MADMITCI)

FORMAT ¢ ", 18, 7X, *(*, F§.8, ",", F6.83, ", 8X, G13.5, 28X,

2613.5, 10X, 2G13.5)

GO TO 20
CONTINUE

WRITE (6, 115) I, PCI, 1), PCI, 2), MEXACT(I), MPHI(I), MVELP(D,

MYP(I), MADMIT(I)

FORMAT ¢(* *, I3, 7X, "(*, F5.8, ",", F6.3, " ", 8X, 26138.8,. 10X,

G13.5, 23X, 2G13.5)

cO TO 20
CONTINUE

WRITE (6, 116) I, PCI, 1), P(I, 2), MEXACT(I), MPHI(I), MVELP(D),

PVELM( 1), MYP(D)

FORMAT (" ", 13, 7X, "(", F§.3, ",", F6.3, “)", 8X, 2G13.5, 10X,

2G13.5, 10X, G13.5)

CONTINUE
CONTINUE




PRINT 120

c
120 FORMAT ( "I1THE PHASE OF THE ACOUSTIC POTENTIAL, THE ACOUSTIC VELO",

. "CITY, AND THE EFFECTIVE ADMITTANCE ARE: " /s//
. * N*, 11X, "P(RHO, Z)", 21X, "PHI*, 33X, "VEL", 24X,
"EFFECTIVE ADMITTANCE" -~
. *, 36X, "EXACT CALC", 20X, "EXACT CALC",
20X, "EXACT CALG" /7 " %)

Do 111 =1, NP
IF (JCHECK(ID)) 12, 13, 14
12 CONTINUE

WRITE (6, 114) 1, PC(I, 1), P(I, 2), PEXACT(I), PVELP(I),
. PPVELP(I), PYP(I1), PADMIT(ID)

GO TO 15
i3  CONTIRUE

WRITE (6, 115) I, PC(I, 1, PC(I, 2), PEXACT(I), PPRICI), PVELP(I),
‘ PYP(1), PADMIT(I)

GO TO 15
14 CONTINUE

WRITE (6, 116) I, PC(I, 1), PC(I, 2), PEXACT(I), PPHICI), PVELP(D),
. PPVELP(I), PYP(ID)

15 CONTINUE
11 CONTINUE

WRITE THE SURFACE DISTRIBUTIONS TO THE OUTPUT FILE.
WRITE (10, 121) (CPHIC(I), VELP(D), I = 1, NP)

C
121 FORMAT (4G20.10)

RETURN
END




The following computer program reads the previous programs
output file containing the values of the acoustic quantities on the surface of
the body and calculates the values of the acoustic quantities at any given
point in the field surrounding the body. The required inputs are the points
where the acoustic quantities are known on the surface of the body Q, the
normals to the body at these points NQ, the length of each integration
interval LENGTH, the points in the field where the acoustic quantities are
required P, and some arbitrary normal at these points NP as the normal
acoustic velocity is calculated. The problem specification data is also
required again; that is, k the wave number and m the mode number.

The program prints out all the geometric input data and the

acoustic potential and normal acoustic velocity at the field points. It also

calculates and prints out the SPL(dB) at each field point.




PK)GMH EXPFF ( INPUT, OUTPUT, TAPE10, TAPEll,
TAPES = INPUT, TAPE6 = OUTPUT)

c
C
c:::::tnnnx:nmnn*un:n:::t::**nnx*n::msm
Cx *
Cx *
Cx THIS PROGRAM CALCULATES THE ACOUSTIC POTENTIAL AND THE *
Cx ACOUSTIC VELOCITY IN THE FIELD SURROUNDING ANY AXISYMMETRIC *
Cx BODY FMPLOYINC THE SURFACE DISTRIBUTIONS OF THE ACOUSTIC *
Cx POTENTIAL AND THE NORMAL ACOUSTIC VELOCITY. *
Cx *
AN S N K K 3 KK K KK KR KRR KKK KR K KR R KRR R R RAR KRR KRR KRR KRR KKK
Cx *
Cx A CYLINDRICAL FORMULATIOR OF THE PROBLEM IS EMPLOYED. *
C* *
Cx *
RN NN N K K KKK K R KRR KKK KR KK K KR KRR R KK KR KRR R KRR KRR KK
C
C

REAL K, LENGTH

COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, IK, IKSQ
c

COMMON 71/ M, NP, NQ

COMMON R/ FOURPI, K, PI, TWOPI

COMMON ~C/ IK, IKS@

COMMON /RD- LENCTH (102), P (9, 2), PNORMAL (9, 2),

% Q (102, 2), QNORMAL (102, 2)

COMMON ~CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102)

COMMON /NGAUSS~ NCAUSS

COMMON /GAUSS/ GAUSST (48, 2)
C

CALL INPUT
C
C REAL CONSTANTS
C

TWOPI = 2.0 x PI

FOURPI = 4.0 x PI
c
C COMPLEX CONSTANTS
C

IK = (0.0, 1.0) x K

IKSQ@ = [K * [K
c

CALL CALC
C

CALL OUTPUT
Cc

STOP "NORMAL"
C

END
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BLOCK DATA
REAL K

COMMON ~1/ M, NP, NQ

COMMON /R/ FOURPI, K, PI, TWOPI
COMMON /NGAUSS.” NGAUSS

COMMON /CAUSS/ GAUSST (48, 2)

THE. NUMBER OF POINTS IN THE FIELD WHERE THE ACOUSTIC POTENTIAL
AND THE ACOUSTIC VELOCITY ARE TO BE CALCULATED.

DATA NP 7 9 /

THE NUMBER OF POINTS ON THE SURFACE OF THE BODY WHERE THE
ACOUSTIC POTENTIAL AND THE NORMAL ACOUSTIC VELOCITY ARE KNOWN.

DATA N@ 7 102 ~/

DATA P1 -/ 3.1415926535898 /

DATA NCAUSS / 48 /

DATA ((CAUSST(I, J), J =
. 7/ 0.01627674484960,
. 0.04881298513605,

0.08129749546443,
0.11369585011067,
0.14597371465490,
0.17809688236762,
0.21003131046057,
0.24174315616384,
0.27319881259105,
0.30436494435450,
0.33520852289263,

. 0.26569686147231,
DATA ((GAUSST(I, J), J =
s 7/ 0.39579764982891,
.42547898840730,
.45470942216774,
.48345797392060,
.01169417715467,
.53938810832436,
.56651041856140,
.59303236477757,
.61892584012547,
.64416340378497,
.66871831004392,
. .69256453664217,
DATA ((GAUSST(1, J), J =
- / 0.71567681234897,

0.73803064374440,
0.75960234117665,
0.78036904386743,
0.800308744139 14,
0.851946031073793,
0.83762351122819,
0.85495903343460,
0.871383850590930,
0.88689451740242,
0.20146063531585,

v 0.91507142312090,

DATA ((GAUSST(I1, J), J =
. 7/ 0.92771245672231,

0.93937033975276,

.95003271778444,
. 25968129 144874,
.06332682846326,
.975939174585 14,
.98251726356301,
.98005412632962,
.99254390032376,
.99598184298721,
.99836437586318,
.99968950388323,

SeoOoSCOCICSe

SoSoSOCSSeSSe

1, 2, I = 1, 12)
0.03255061449236,
0.03251611871387,
0.03244716371406,
0.03234382256858,
0.03220620479403,
0.03203445623199,
0.03182875889441,
0.03158933077073,
0.03131642559686,
0.03101033258631,
0.03067137612367,
0.0302999 1542083 /
1, 22, 1 = 13, 249)
0.02989634413633,
0.02946108995817,
0.02899461415056,
0.02849741106509,
0.02797000761685,
0.02741296272603,
0.02682686672559,
0.02621234073567,
9.02557003600535,
0.02499063322248,
0.02420484179236,
0.02348339908593 7/
1, 2), 1 = 25, 36)
0.02273706965833,
0.02196664443874,
0.021172939289219,
0.02035679715433,
0.019519081140135,
0.01866067962741,
0.01778250231605,
0.01688547986425,
0.01597056290256,
0.01503872102699,
©.01409094177231,
0.01312822956696 /
1, 2>, 1 = 37, 48)
0.01215160467109,
0.01116210209984,
0.01016077053501,
0.00914867123078,
0.00012687692570,
0.00709647079115,
0.00605854550424,
0.00501420274293,
0.00396455433844,
9.00291073181793,
0.00185396078895,
0.00079679206555 7
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SUBROUTINE INPUT

REAL K, LENCTH
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ

COMMON /I M, NP, NQ@

COMMON /R/ FOURPI, K, PI, TWOPI

COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2),
Q (102, 2), QNORMAL (102, 2)

.COHHON /CDs/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102)

READ (3, 100) ((PC(I, ), J =1, 2), I = 1, NP)
READ (5, 100) ((PNORMAL ¢I, J), J =1, 2, I =1, NP}
READ (5, 100) (<@(1, J), J =1, 2), I =1, N®

READ (5, 100) ((@QNORMAL (I, J), J 1, 2, I =1, N\®

READ (5, 100) (LENGTH(D), I = 1, N@
FORMAT (8G10.0)
PRINT 101

FORMAT ( "1GEOMETRIC INPUT DATA:" ///

“« . 4X, "N", 21X, "Q(RHO, Z)", 38X, "NORMAL(RHO, 2)°*",
29X, °"LENGTH" /7 " ")

WRITE (6, 102) (I, Q(I, 1), @I, 2), QNORMAL(I, 1), QNORMAL(I, 2),

LENGTH(D), T = 1, NQ@

FORMAT ¢(* ", 2X, I8, 10X, *(*, F13.10, *,", Fi38.10, )", 21X,

(%, P18.10, ", %, Fi3:10, ")*; 1TX,
F13.1@)

PRINT 103

FORMAT ( “IFIELD POINT INPUT DATA:" ///

" om 4X, "N", 21X, "P(RHO, Z)>", 38X, "NORMAL(RHO, Z)" //
" ll)

WRITE (6, 104) (I, PC(I, 1), PCI, 2), PNORMAL(I, 1), PNORMAL(I, 2),

I= 1, N®

FORMAT (" ", 2X, I3, 9%, "(*, Fl4.10, *,*, Fi4.10, ") ", 20X,

" x, Fi8.16, “,"% P13.10, "%
READ (10, 105) (CPHIQ(I), CVEL@(I), I = 1, RQ@
FORNMAT (4G20.10)

PRINT 106
FORMAT ("1", 61X, "Xxkkkxxxx" / * " 61X, "% x* /
. " GIR, = ODY x* L * %, $lIK, ™ ®* 7

" % 61X, “kRRkRRXX* //// " N, 21X, "Q(RHO, Z)", 28X,
"ACOUSTIC POTENTIAL", 21X, "ACOUSTIC VELOCITY" // " ")

WRITE (6, 107) (I, Q@(1, 1), @I, 2), CPHIQ(I), CVELQ(D),

1= 1, N

FORMAT ¢~ *, 18, 9K, “(", F19.19, ", ", F18.10, "),

9%, "(*, Fi4.10, ",", Fl4.10, " ",
8x, "(", F14.10, ",", Fl4.10, ) ")

READ (11, 1100 M, K
FORMAT (1206, G20.90)

RETURN
END
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SUBROUTINE CALC

REAL K, LENGTH, NDOTN, NRHOQP, NZPZD, NZQZD, NZQP
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, G, GP, GPP, IK,
. 13, 14

COMMON /I M, NP, NQ

COMMON /R~ FOURPI, K, PI, TWOPI

COMMON /C/ IK, IKSQ

COMMON “RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2),
Q (102, 2), QNORMAL (102, 2)

IKse, I1,

.COHPK)N /CDs CPHIP (9), CPHIQ (1062), CVELP (9), CVELQ (102)

COMMON /NGAUSS/ NGAUSS
COMMON ~CAUSS/ GAUSST (48, 2)

Do 11=1, NP
CPHIPC(I) = (0.0, 0.0)
CVELP(I) = (0.6, 0.0)

X1 INTEGRATION

bo2J =1, NQ

GCAUSZ = TWOPI * 17 GTH(J)

ZD = @J, 2) - P(1, 2)

NZQZD = QNORMAL(J, 2) *x ZD

NZPZD = PNORMALCI, 2) * ZD

7ZSQ = ZD x ZD

RHOSQ = (Q(J, 1) - P(I, 1))**x2
RHOGQP2 = 2.0 x @Q(J, 1) *x PC(I, 1)
NRHOQP = QNORMAL(J, 1) *x PNORMAL(I, 1)
NZQP = QNORMAL(J, 2) * PNORMAL(I, 2)
RHOZSQ = RHOSQ + ZSQ

THETA INTEGRATION

DO 3 IT = 1, NGAUSS

THETA = PI * GAUSSTCIT, 1)
GAUSZT = GAUSZ * GAUSSTC(IT, 2)

COST = COS (THETA)
COSMT = COS (M x THETA)

R = SQRT (RY0ZSQ + RHOQP2 x (1.0 - COST))
DRDNP

12,

(PNORMALCI, 1) * (PCI, 1) - QJ, 1) * COST) - NZPZD) / R

DRDNQ = (QNORMAL(J, 1) *x (@J, 1) - P(I, 1) *x COST) + NZQZD) - R

NDOTN NRHOQP * COST + NZQr

6 = Q(J, 1) * CAUSZT x COSMT x CEXP (IK * R) / R
GP = CG® (IK - (1.0 7 )

GPP = G x (IKSQ - (3.0 x IK/ R) + (3.0 7~ (R x R)))

11 = GP * DRDNQ

12 = -G

I3 = GPP x DRDNQ * DRDNP - (GP * NDOTN / R)
14 = -GP x DRDNP

CPHIPC(I) = CPHIPCI) + I1 * CPHIQ(J) + I2 x CVELQ(J)
CVELP(I) = CVELP(I) + I3 * CPHIQ(J) + I4 x CVELQ(J)

CONTINUE
CONTINUE

CPHIP(I) = CPHIPCI) ~ FOURPI
CVELP(I) = CVELP(I) - FOURPI

CONTINUE

RETURN
END

T — L ——
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TORMAT ( "LINPUT FOR THIS CASE IS:" ///

SUBROUTINE OUTPUT

REAL IPHI, IPHIP, IVEL, IVELP, K, LENGTH, MPHI, MPHIP, MVEL,
MVELP
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, Y i

COMMON /I/ M, NP, NQ

COMMON R/ FOURPI, K, PI, TWOPI

COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2), 3
Q (162, 2), QNORMAL (102, 2)

COMMON ~/CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102)

COMMON /NGAUSS/ NGAUSS

DIMENSION IPHI (9), IPHIP (9), MPHI (9), MPHIP (9),
PPHI (9), PPHIP (9), RPHI (9), RPHIP (9),
IVEL (9), IVELP (9), MVEL (9), MVELP (9),
PVEL (9), PVELP (9), RVEL (9), RVELP (9)

INITIALIZE EXACT SOLUTION.

PO 21 = 1
RPHIC D)
IPHICT)
MPHICI)
PPHICID)
RVELC( I)
IVELC I)
MVELC D)
PVEL( D)
CONTINUE
NGAUSS = 2 x NGAUSS

b

L L T L I I T A 1 §
scococos=Z

SO0 OSOOS

WVRITE (6, 100) K, M, NGAUSS

w v, 68X, "K =%, F10.6 7~ * %, 66X. M =", I8 7/
“ v 13X, "NUMBER OF GAUSSIAN POINTS IN THE THETA DIRECT",
“ION =", I3, " (GAUSS - LEGENDRE)")

pDOos51=1, NP

RPHIP(I) = REAL (CPHIP(I))
RVELP(I) = REAL (CVELP(I))
IPHIPCI) = AIMAG (CPHIPCI))
IVELP(I) = AIMAG (CVELP(I))
MPHIP(I) = CABS (CPHIPCI))
MVELP(I) = CABS (CVELP(I))

PPHIPCI) 0.0

PVELP(I) = 0.0

IF (MPHIP(1) .NE. 0.6) PPHIP(I) = ATAN2 (IPHIPC(I), RPHIP(I))
IF (MVELP(I) .NE. ©.0) PVELP(I) = ATAN2 (IVELP(I), RVELP(I))
CONTIRUE

PRINT 103

FORMAT ("1", 58X, "kXkxxxkxkkxxkx" / " " 58X, "x il 4
“ » 88X, "x CALCULATED x*" ~ " ", 38X, "% w
"ow 58X, 'sRRkRRKKRRKRXKRX" ////7 " N', 21X, "P(RHO,. 2)",
25X, "ACOUSTIC POTENTIAL",
21X, "ACOUSTIC VELOCITY" ~/ " ")

WRITE (6, 102) (I, PCI, 1), P(I, 2), CPHIP(I), CVELP(D),
I =1, NP

FORMAT (" *, I3, 8X, "(", F14.10, ",", Fil4.10, )",
: O8Rs (" F14.10, *,", Fi&. 20, "),
ax, "(*, F14.19, ",", Fis.10, ") ")




" Piuir 109

FORMAT ( "1THE MODULUS OF THE ACOUSTIC POTENTIAL AND THE ACOUSTIC*®,
. * VELOCITY ARE:* //// * N", 11X, "P(RHO, Z)*, 14X,
"PHI/COS(MXTHETA) ", 20X, "VEL/COS(MxTHETA)", 8X,
*SPL (DB)*, 16X, "Y" 7/
" v, 36X, "EXACT CALC", 20X, "EXACT CALC" 7/

" l)

o7 1I=1, NP
SPL = 20.0 x ALOG10® (K * MPHIP(I)) + 146.6
Y = CVELP(I) ~ CPHIP(I)

WRITE (6, 110) I, Pc1, 1), PC(I, 2), MPHIC(I), MPHIP(I), MVEL(D),
. MVELP(I), SPL, Y

FORMAT ¢* ", I3, 6X, "(*", F6.3, ",", F?.3, ", 7X, 2G18.5, 10X,
. 2G613.5, 2X, F7.2, 5%, 2G13.5)

CONTINUE
PRINT 112

FORMAT ( "1THE PHASE OF THE ACOUSTIC POTENTIAL AND THE ACOUSTIC V",
. "ELOCITY ARE:" //// " N®*, 11X, "P(RHO, 2)", 21X,
"PHI", 33X, "VEL" /
“ o, 86X, "EXACT CALC", 20X, "EXACT CALC" 7/
" II)

WRITE (6, 113) (I, P(I, 1), PCI, 2), PPHICI), PPHIP(I}, PVEL(I),
. PVELP(I), I = 1, NP)

FORMAT (* *, I3, 6X, "(*, F6.3, ",", F7.3, ", 7X, 26G13.5, 10X,
. 2G13.5)

RETURN
EFRD
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PREDICTION OF THE SOUND FIELD RADIATED FROM
AXISYMMETRIC SURFACES

W. L. Meyer W. A. Bell’ M. P. Stallybrass**and B. T. Zinn®
*School of Aerospace Engineering
**School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
Abstract
A general analytical method for determining the radiated sound fields
from axisymmetric surfaces of arbitrary cross section with general boundary
conditions is developed. The method is based on an integral representation
for the external solutions of the Helmholtz equation. An integral equation
is developed governing the surface potential distribution which gives unique
solutions at all wave numbers. The axisymmetric formulation of the problem
reduces its solution to the numerical evaluation of line integrals by
Gaussian quadrature. The applicability of the solution approach for both a
sphere and finite cylinder is demonstrated by comparing the numerical results
with exact analytical solutions for both discontinuous and continuous boundary
conditions. The method is then applied to a jet engine inlet configuration

and the computed results are in good agreement with exact values.

I. Introduction
To reduce the noise radiated to the community from turbofan inlets, the
effects of sound suppression material in the inlet and the spatial distri-
bution of the sound source on the radiated sound levels and patterns must be
determined. Analytical techniques for prédicting these effects must be cap-
able of dealing with general axisymmetric geometries and complicated boundary
conditions which are encountered in multiply-lined inlets. For instance, in

a typical inlet the compressor-fan combination represents a noise source




with a nonuniform spatial excitation pattern. Thus, the analytical method
should be capable of taking into account sound sources of general spatial
distribution. Also, inlets may contain multiple acoustic liners to reduce
the radiated sound power and admittance boundary conditions are commonly
used to account for the absorption characteristics of the liner. Therefore,
the analytical method must be capable of dealing with spatially varying sur-
face admittances. Finally, the method should be capable of predicting the
characteristics of the radiated sound field in an infinite domain. Keeping
these requirements in mind, the work presented in this paper describes the
results of an investigation which has been concerned with the analytical
determination of radiated sound fields from axisymmetri: surfaces of arbi-
trary cross section and with general boundary conditions.

The method used in this investigation is based on an integral form of
the solutions of the Helmholtz equation.l-6 With this formulation the acous-

tic potential anywhere external to the surface can be found once the distri-

bution on the surface is known. Thus, to determine the radiated sound field

the problem reduces to the determination of the distribution of the acoustic
potential on the two dimensional surface of the geometry under consideration
instead of aolviné the Helmholtz equation in the surrounding infinite three

dimensional domain.

It has been previously shown 1-5

that when applied to exterior sound
radiation problems the classical techniques fail to produce unique solutions

at frequencies corresponding to certain interior eigenvalues of the geometries

under consideration. Unless special precautions are taken, straight-forward
Fn numerical solution of the integral equation produces large errors at frequen-

cies close to these eigenvalues. For the general geometries of interest in

this study, these eigenfrequencies are not known a priori. Therefore,

b
n




the frequencies about which large numerical errors can occur cannot be easily
avoided. A critical review of available analytical techniques for avoiding
these errors is provided by Burton in Ref. 1. 1In a search for an appropriate
technique for use in the present study of inlets, the authors programmed each
of these methods for a sphere and obtained numerical results for the surface
and radiated sound field. This study showed that the method of Burten and
Miller4 was the most straightforward to implement. However, an inter-
pretation of a strongly singular integral, given in the analysis in Ref. 5
by Meyer, et.al. was necessary for the equations to be amenable to numerical

solution. Basically the method proposed by Burton and Miller involves a

|
|
1
|

reformulation of the integral equation for the acoustic potential and the
solutions obtained are valid at all frequencies. It also yields the most
consistently accurate results for a given number of points at which the
acoustic potential is numerically evaluated on the surface. Therefore, the
method based on the analysis in Ref. 5 has been chosen for this investigation.
The resulting integral equation for the surface acoustic potential is
solved numerically and, for axisymmetric geometries, the equation reduces to

the evaluation of line integrals. Thus, the axisymmetric case can be reduced

to an equivalent one-dimensional problem. Having discretized the integral

equation, the resulting system of algebraic equations is solved using complex ' 3
Gauss-Jordan elimination. Since the coefficient matrix involves the free
space Green's function, which becomes singular as two points on the surface
approach one another, numerical techniques are presented which can deal

with these singularities and yield accurate results. Gaussian integration is

! used to increase the accuracy of the solution without significant penalties '

in computer storage and time requirements. The applicability of the integral

| formulation and the accuracy of the numerical techniques are demonstrated by




computing the surface and far field distributions of the acoustic potential
on both a sphere and a finite cylinder. The numerical results are compared

with known exact solutions generated by the separation of variables technique.

Surfaces with spatially varying forcing functions and admittances are
considered, for different tangential modes, to evaluate the capability of the
integral approach to handle boundary conditions of a general nature. With

the sphere, agreement between computed and exact results is to three signifi-
cant figures. For the cylinder agreement is to two significant figures. The
effect on the accuracy of discontinuous boundary conditions involving nonzero
admittances over the surface and of the corners encountered in the cylindrical
configuration are also presented. Finally, the numerical results for an

inlet configuration are compared with exact solutions and agreement is to

within ten per cent.

I1. Theoretical Considerations

In this section the general three dimensional integral representation of
the solutions of the Helmholtz equation is developed for application to radi-

ation problems. This particular formulation yields unique solutions at all
frequencies and does not have strong singularities which are difficult to
handle numerically. The general integral equation is then specialized for
axisymmetric geometries. A more detailed development is presented in Ref. 5.

General Formulation

Beginning with the three dimensional Helmholtz equation which governs

the spatial dependence of the acoustic field for harmonic oscillations

2 2
go+k 9o=0 (1
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‘ where ¢ is the acoustic potential and k is the wave number; the standard
integral representation of the exterior potential is found to bel’6
AG(P :
[] o LD _gee E s - sne@
on on q
s q q (2)
where the term S%— represents an outward normal derivative with respect
q
to the body S as shown in Fig. 1; that is,
s%(xgz = Vg 9@ -+ B
q 3)
Also, G(P,Q) is a fundamental three dimensional solution of the Helmholtz
equation and is taken to be the free space Green's Function for a point
6 :
source defined as eikr(P,Q)
G(E,Q) = ==
&R =500 @)
From Eq, (2), if the acoustic potential and the nommal acoustic velocity
2Q are known at each point on the surface of the body then the acoustic

9
ng

potential may be calculated anywhere in the exterior domain.
* To solve for the surface potential, the point P is moved to the surface

of the body, and Eq., (2) then becomes

[ @ 28ZR _gpq) Q) yas = 2q4p)

For the inhomogeneous Robin boundary condition employed in this study,

a relation between a¢(Q)/anq and @(Q) exists which is given by

2Q) . y@o@ =A@,
q

(6)

so that Eq, (5) can be written in terms of the potential only; that is,

Pooy MR 45 . 11
JJ » (@) anq dSq ‘ls" Q(Q)G(P,Q)Y(Q)dSq (7)
S
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If the acoustic velocity A(Q) and the admittance Y(Q) are specified at each
point on the surface of the body, then the acoustic potential may be calcu-
lated at each point using Eq.(7).

As mentioned earlier this equation does not yield unique solutions when
the wave number k is an internal eigenvalue associated with the problem under
consideration. Since these eigenvalues are not known a priori for general
bodies, the formulation cannot be relied upon to give consistently good results.

There are a number of papers in the literature 22344

dealing with this problem,
and the relative merits and shortcomings of the methods employed are discussed
in detail in Ref. 1.

An attractive approach from an analytical point of view is provided by
Burton and Miller4 who have suggested the use of the following identity to

derive an alternative integral equation for the acoustic potential at the

surface.

: - :
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(8)
This equation can now be solved for ¢(P) by using Eq. (6) to relate the normal
acoustic velocity and the potential at the surface. However this integral
equation has its own set of associated eigenvalues at which unique solutions
cannot be obtained. To circumvent the problem associated with the solution of
the integral ecquations derived from Eqs.(5) and (8), Burton and Miller suggested

the solution of the following linear combination of these equations:
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where 39/ 9n and @ are related by Eq. (5). Equation (9) will yield unique
solutions if the complex coupling constant is properly chosen. It is shown
that of must meet the following restrictions to guarantee that Eq. (9) yields

9 . *
unique solutions:

Im (¢) # 0 k real or imaginary

Im (¢) =0 k complex ; (10)

A problem arises in the numerical solution of Eq. (9) as the third term
on the left hand side is strongly singulzar in its present form as the point
Q approaches the point P on the surface of the bodv. The authors of this
paper have shown that this difficulty can bes overcome by a propar interpre-
tation of this singular term.5 Employing a vector transformation8 and taking
the Cauchy Principle Value, Eq. (9) is shown to be equivalent to

[0 %20 oo 20 s,

S
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2
- o (P j f o e )Xk} G(F ds
o® [ J(n « n)(0)° 6(R,Q) ds,
S
* It has been pointed out to us by a reviewsr that ap equation of the same
gencral form as Eq. (9) has been given by Chertock’. However, for an arbi=-

trary, smooth surface, Chertock did not interpret this integral equation
correctly. Specifically, the limit indicated in the final term of (Al7),
Ref. (7), does not exist as may be verified for the simple case of a sphere.
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All of the terms in Eq, (11) are now well defined; however, all the inte-
grands are oscillatory and singular so that care must be taken in their

numerical approximation,

Axisymmetric Formulation

When dealing with a body of revolution as shown in Fig. 2 an axisym-
metric formulation of the problem is advantageous.9 This being the case an
element of area dSq becomes pdsd9 where s is the distance along the perimeter
of the surface in the p=-z plane, Assuming an acoustic velocity distribution
of the form

% _
o v(s) cos m @ (12)

and describing the s dependence of the potential function by

[

Fispm e 13)

and letting 0p= 0 (so that cos ep= 1) Eq, (11) becomes:
QGQP,Q!
I j @(sq) Bﬂq cos m eq dSq
S

2
- a8(s) I f 6(7,Q) (i) (n_en,) ds,
S

+ o I f [Q(sq) cos m Qq - @(sp)] %;g§§421 dSq
-
S

(14)

! - I j V(Sq) G(P,Q) cos m eq dSq
S

e —— e g — e ———— g — - - —




-« j J v(s G P 26(P,0) cos m eq dSq

= 217[¢(sp) + o v(sp)]

Now, three sets of functions are defined:

Influence Functions

m
L (rpq) =2 Jo G(P,Q) cos m eq deq
(15)
& 3G(P.Q)
I2 (rpq) = 2¢ l e cos m eq deq
P
Kernel Functions
E GSPIQZ
K1 (rpq) =2 j cos m eq deq
(16)
Eh
- 9 G(P.Q)
K2 (rpq) 2y J anpanq cos m eq deq, eq # ep
Forcing Functions
i 2
B () = 2o [ 62,0 (0 (npeny) dog
(17)

r(r)-Zaj g—Gﬂ’ﬁ)—de o * 6
P q

where rR1 is the distance between points P and Q and np and nq are the
outward normals to the surface at points P and Q, respectively, In evaluat=-

ing K, and F the point at which ep = eq is excluded from the integration,

2 o
Substituting Eqs, (15)-(17) into Eq. (14) gives

4

~

Jo 8(s) {Kl(rpq) + Kz(rpq)} s,
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L
- Q(sp) l {Fl(rpq) + FZ(rpq)} dsq
L (18)

g J v(s,) {11(rpq) +1, (rpq)} ds,
[o]

- 2ﬂ[<§(sp) + dv(sp)‘J

where 4 is the length of the generating line of the surface of revolution,
The s=Q coordinate directions have now been essentially uncoupled so that
the problem has been reduced to the evaluation of the line integrals in
the coordinate directions on the surface of the body., This formulation
does not restrict the form or type of boundary conditions on the body;

it merely assumes that the boundary conditions can be represented by a

sum (cxpanded in a set) of tangential modes,

III. Results

The acoustic fields for a sphere, cylinder, and inlet configuration
have been computed by numerical solution of Eq, (18) using the techniques
described in Ref, 10, Basically, this method consists of first specifying
the p=-z coordinates and the normal vector at each point on the surface,
From these quantities the distances and the normal derivatives can be ob=-
tained, The integral in Eq, (18) is then separated into n integrals taken
over subintervals of length 4/n, The acoustic potential is assumed constant
over each subinterval and the integrations are performed numerically using
Causs-Legendre quadrature in the p=-z plane, Over the subinterval containing
the point P, the integrand in Eq., (18) becomes infinite since rpq approaches
zero, Thus, only an even number of points is used in the quadrature algorithim,

since an odd number would necessitate inclusion of the point where rpq = 0,




-
|

A Gauss-Legendre quadrature formula is used in the circumferential direction

to evaluate Eqs. (15) - (17). All calculations were performed on the Georgia

Tech CDC Cyber 70/74 with sixteen significant figures.

In all geometries investigated, exzct solutions were obtained for m = 0
by assuming a monopole source located at point ( p ,z) = (0,0) inside the sur-
face. The normal velocities and/or admittance values are then computed at

each point on the surface using Eq. (6) and taken as the boundary conditions

in Eq. (18). The surface potential § (53) is then computed from Eq. (i8) and
the far field potential is obtained by numerically solving Eq. (2) with Eq. (6).

The computed surface and far field potentials are then compared with the known

potential distribution of the monopole source

ika

o) = == a9)

where a is the distance from the source to the observation point. For m = 1
: a dipole source was used to generate exact solutions, and for m = 2 a quadra-
pole source was used.

To investigate the effect of the coupling constant g in Eqs. (15) ~ (17),
the surface potential distributions for 2 sphere of unit radius with a uni=~
formly vibrating surface (i.e. m = 0) were computed for o« =0,i, and i/k. Twenty
subintervals were taken in the p -z plar2, a four-point Gauss-Legendre quadra-
ture formula was used over each subinterval and a twenty-point Gauss-Legendre
formula was used in the @ direction. The magnitude of the potential should be

§ unity at all points on the surface. The results presented in Fig. 3 show the
computed magnitudes of the surface acoustic potential to be in error by 12

\ per cent for o = 0 at nondimensional wave numbers ka close to ¢, 2 nn, and 3y,

These results are those that would be obtained from Eq. (7). The relatively

large errors are expected from the analvsis of Burton and Millerb and from previous

| : 2,5 ; .
investigations using Eq. (7). *" Burton proves that setting the imaginary

e ———— e B e — st s o g -, SN
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part of ¢ nonzero guarantees unique solutions to Eq. (18), Foro = i the
maximum error is reduced to less than four per cent except when k is close
to 8.0. However, when o= i, and for sufficiently high values of ka, Eq. (9)
is dominated by terms arising from Eq. (8). As a result, the solution equa-
tious become ill-conditioned when ka is sufficiently high and close to one
of the eigenfrequencies associated with the integral equation based on Eq. (8).
In Table I computed values close to these eigenfrequencies and the eigenfre-
quencies of Eq. (7) are compared with exact results for ¢ = 0, i, and i/k.
In all cases, the value of i/k gives the most accurate results. In Table II,
the effect of introducing an admittance condition is presented for a= i/k.
The admittance Y(Q) and forcing function A(Q) in Eq. (6) are chosen so that
the relations

30 _eikr (20)

anq' YQo = AQ) ; o= 3

are satisfied on the surface and the exact solutions can be readily computed.
The loss in accuracy when an admittance condition is used is minimal and re-
strictcd to the third significant figure. However, for discontinuous boundary
conditions, where the forcing function is specified over one part of the sur~
face (i.e., the admittance is zero there) and the admittance is specified
over the remaining surface, errors of over ten per cent in the real and imagi-
nary parts of the computed surface potential result. For comparison, the case
of a constant forcing function and admittance over the sphere for @ = Q0 is also
presented and in all cases yields results of less accuracy than those obtained
with ¢ = 1/k.

In this study consistently good results were obtained with ¢ = i/k. In
Fig. 3 the computed and exact values for o = i/k agree to three significant

figures over the range of nondimensional wave numbers from one to ten. In

T e e . ——— -
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fact, for this value of o , the accuracy is significantly better at all wave
numbers investigated. While Burton and Millerg provide no recommendations for
choosing one value of « over any other value with an imaginary component,
the choice @ = i/k used in the present study can be explained as follows.
The terms in Eqs. (15) - (17) which involve « are of order k? whereas the J
remaining terms are of order k. Therefore, at higher wave numbers the terms
of order k2 dominate. By choosing « to vary inversely with the wave number,
all terms in Eqs. (15) - (17) remain of the same order with respect to wave
numbcr.*

A problem of wmore practical importance ieg the finite axisymmetric duct
since this surface approximates an engine configuration. The surface poten-

tial distributions are presented in Fig. 4 at different nondimensional wave

numbers for m = 0. The normal acoustic velocity distribution A(Q) is chosen
so that the solution for the acoustic potential satisfies Eq. (19). The
parameter ¢ is taken to be i/k. Twenty subintervals are taken in the p -z
plane and a twenty-point Gauss-Legendre quadrature is used in the @ direction.
In Fig. 4 the variations of the magnitude and phase with distance along the
perimeter s are presented. The largest errors in the computed magnitude of
the potential of about ten per cent occur on the ends of the cylinder and at
the corners. The results at the ends can be improved without increasing the
number of points by area weighting rather than taking equidistant points
along the perimeter. The errors in the phase are less than four per cent

in all cases. The errors in the magnitude of the computed surface potential

increase with increasing nondimensional wave number;

* It is interesting to note that in the report by Chertock7 he suggests the
usce of 1/k on the grounds that it has the correct physical dimensions
(i.e. length) that will maintain the dimensional homogeneity of Eq. (18).
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but, even when ka =10, the numerical results are within ten per cent of
the exact solutions, For ¢ =0 or i the errors are significantly larger
above ka =2,

In most inlet problems the boundary conditions are discontinuous with
the acoustic velocity or potential (which is directly proportional to the
acoustic pressure) specified over part of the surface and the admittance
(representing liners) over the rest, To detemine the effect of the discon-
tinuities and the use of an admittance function on the numerical results
for m=0, a cylinder was investigated, The velocity was specified on the
ends and the admittance was specified in the center so that the solution
for & was given by Eq. (19) and Eq., (6) is satisfied, Again, twenty points
are used in the p-z and ( directions. The results are shown in Fig. 5.
Although the errors in the numerical results for this case are higher than
those observed in Fig., 4, the errors still remain within 10 per cent for
values of ka less than 5, However, when ka =10 errors of up to 40 per cent
in the magnitude of the potential are encountered close to the discontinuity
in the boundary condition, This error can be reduced by increasing the num-
ber of subintervals in the p-z plane, Doubling the number of subintervals
halves the error, When both the normal acoustic velocity and the admittance
are continuous on the surface, the errors are of the same order of magni=-
tude as those of Fig. 4., For tangential modes, the variation in the circum=-
ferential direction behaves as cos m @ where m = 0,1,1..... To check the
numerical intcgration scheme in the circumferential direction, the surface acous-
tic potential was computed for m=1 and m=2 for the cylinder shown in Fig. 4.

The results are presented in Fig, 6 for ka=2 with the normal acoustic velocity

specified everywhere on the surface, The computed and exact results (i.,e. from a

dipole and qudrapole) are in agreement to within two per cent for both m=1
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and m=2,

It has been shown5 that once the surface potential has been accurately
computed, the far field can be determined to at least the same accuracy as
the surface potential. This result is confirmed by the data presented in
Fig, 7 for the cylinder of Fig. 4 with the velocity specified everywhere on
the surface with ka=2 and m=0. The results at 20 radii from the surface
are in agreement with exact results obtained from Eq, (19) to within one
per cent even though the surface errors at some points are above two per
cent, Data in Fig, 8 show that accurate results are obtained at distances
greater than one integration stepsize from the surface. At closer distances
errors from the numerical evaluation of the singularity in the Green's
function defined by Eq. (4) leads to large errors.

The studies of the acoustic fields of the sphere and cylinder served
to check out and refine the numerical procedures and programming techniques, ;
The next configuration investigated was an inlet used in a study by NASA.11
This inlet is shown in Fig. 9 and was chosen because:

(1) unlike most inlets used in research studies, it does not have a

bell=-mouth shape but is shaped like a typical inlet used in exist=-
ing aircraft; and

(2) complete details on generating the inlet boundary are given in Ref, 11,
Forthis inlet, all cases were investigated with o =i/k,

As seen in Fig. 10, the normal velocity distribution, which represents
a forcing function, is highly discontinuous and provides a severe test of
the numerical techniques employed., The numerical and exact solutions for the
surface acoustic potential are compared in Fig, 10 for 32 and 54 subintervals
taken along the perimeter of the inlet in the p=-z plane. Because of the errors

in approximating the lengths of each subinterval, the exact solutions differ

Nii
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slightly as the distance along the periwmeter s increases. The centerbody
in Fig. 9 extends from 0 < s < 0.8, the fan inlet covers 0.8 < s < 1.4, {
the interior contour extends from 1.4 < s < 3.5, the exterior from 3.5

< s £ 5.5, and the circular arc lies within the interval 5.5 < s < 7.45.
Increasing the number of points decreases the error proportionately as
indicated by the data in Fig. 10 at a nondimensional wave number ka of
unity where a is the radius of the inlet at the fan entrance section.

The absolute average error in the results decreases from 10.2 per ceat

for 32 subintervals to 4.16 per cent for 53 subintervals. The computation
time increased from 53
As shown in Fig. 11, the errors increase with increasing frequency.

Like the cylinder, the maximum error in the acousitc potential for the

inlet configuration occurs at the points of discontinuity. The average
error increases from 4.16 per ceat at ka = 1 to 15 per cent at ka = I0.

For the data in Figs. 10 and 11, the acoustic potential is assumed
constant in the tangential plane. The results for a cos(m @ ) distribution
are presented in Fig. 12 at ka = 2. These results show the insensitivity
of the accuracy of the computed results to the tangential distribution

for m = 1,2. The exact soltuions were again generated by assuming dipole

.

and quadrapole sources located at ( 5 ,z) = (0,0).

Based on the above results our numerical and programming techniques are
capable of yielding reliable results for arbitrary geometries and boundary
conditions. At higher frequencies, (ka > 5) it appears that more points

must be taken to increase the accuracy of the computed results.
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IV. Summary and Conclusions

An integral solution of the Helmholtz equation is developed for use in
acoustic radiation problems. Unlike the classical formulation which can lead
to integral equations that do not have unique solutions at frequencies cor-
responding to certain internal eigenfrequencies of the region enclosed by
the surface under consideration, the formulation used in this study is valid
at all frequencies, Also, unlike most current methods and formulations it
is straight forward to implement regardless of how complicated the surface
or the boundary conditions may be., The surface potentials computed numeri-
cally for a sphere and cylinder using 20 subintervals along the perimeter
and for an inlet configuration with 53 subintervals are accurate to within
ten per cent for nondimensional wave numbers ka of from one to ten where k
is the wave number and a is the characteristic length. For discontinuous
boundary conditions, the numerical and exact values are in agreement to with-
in 10 per cent for ka < 5. At higher frequencies the results are as much as
40 per cent in error at points of discontinuity which suggests taking more
points in evaluating the integral equation to increase the accuracy when dis-
continuous boundary conditions are specified. Increasing the number of sub-
intervals decreases the error proportionately. At distances greater than the
numerical integration stepsize, the far field fesults are at least as accu-

rate as the corresponding surface potential solutions.
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Table I

Effect of the coupling parameter o on the computed values of the surface

@ _ _ ik _

potential for a sphere. On the surface A(Q) = (1-ik)e1k s Y(Q) =0 Wb

» Q
constant, m = 0, All values of ka correspond to internal eigenfrequencies,

Twenty subintervals were taken in the p-z plane,

L & 0 i/k i EXACT
ka
. 0, 2.0 1.000 0.998 1
©. -6.3 0.001 -0,012 0
5
. 4493409 9. | 0.190 0.217 0.308 0.217
L
2n o, | =240 -1,000 -0.996 -1
o, | 12.6 0,000 0.031 0
b
7.725252 o, | =0.081 -0,128 0,400 -0,128
o, | -0.9% -0,992 -0,872 -0,992
| i o, 2,0 1.000 0.995 1
wi_ "'1900 0.000 -00050 0

. e ———- A Gy . = S




Table 11
Effect of specifying an admittance on the computed surface potential

for a sphere, In all cases m =0, twenty subintervals are taken in the p-z

planc, and =-e)‘k everywhere on the surface, For Case I, A(Q) = elk
2 Pexact >

and Y(Q) =ii everywhere on the surface, For case I1I, A(Q) = eik(l-ik) and

Y(Q) = 0 over 1/5 of the surface and A(Q) = 0, Y =-(1-ik) over the remainder,

Case II is considered in Table I,

CASE 1 CASE 1 CaASE. 1T CASE 111 EXACT
} ka a = 1il/k a =0 o= 1i/k a= i/k VALUES
{ 1 | g | -0.539 -0,537 -0,538 0,52 ~0.540
4 ©; -0.845 0,849 -0.843 -0,87 ~-0.842
2 @, 0,418 0,422 0.417 0,43 0,416
@ -0,911 -0,937 -0,9909 -0,92 -0.909
3 Q. 0.993 0,916 0,990 1,00 0.990
©; ~0,142 -0.496 =0,140 -0.16 -0.141
5 9, ~0,285 ~-0,288 =0.234% -0,25 -0.284
9 0,961 1,145 0.959 1,00 0.959
10 @, 0.841 -0,3 0,339 0.90 0,839

0,546 0,544
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Figure 1, Geometrical Properties of the General
Acoustic Radiation Problem,




Figure 2, Cylindrical Surface Geometry
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Appendix C

Paper presented at the AIAA 5th Aeroacoustics Conference in

Seattle, Washington, March 12-14, 1979, AIAA Paper No. 79-0675

"Sound Radiation Fram Finite Length Axisymetric Ducts and

Engine Inlets"
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SOUND RADIATION FROM FINIIZE LENGIH*.-\.‘QWEIRIC
DUCTS AND ENGINE INIETS

ek 3 - B
W. L, Meysr , W, A,Bell , and B, T. Zimn

School of Aercospace EZngineering
Ceorgia Institute of Technology
Atlanta, Georgia 30332

Abstract

Results are obtained by numerical integration
of a cylindrically symmetric integral representa-
tion of the exterior solutions of the Helmholtz
equation which is valid (yields unique solutions)
at all wavenumbers, The admittance values across
the entrance plane of hard walled ducts of various
lengths and geometries are computed and compared
with certain "classical" (e.g., Weiner-Hopf) values,
The internal wave structure is also investigated
for straight hard walled ducts and compared with
results obtained from other theories., The radiated
sound fields from ducts of different geometries are
then compared for both unlined and lined configura-
tions, It is found that changes in the duct geometry
result in significant changes in the radiated sound
field, Thus, it is concluded that the sound suppres=-
sion by liners predicted from the study of straight
ducts may not be applicable to more complicated
geometries such as inlet configurations,

Introduction

The development of an analytical method for pre-
dicting the sound field radiated from axisymmetric,
finite length ducts is of much practical interest
in the area of aeroacoustics, especially for the
determination of the sound radiated from a turbofan
inlet, as having such a capability can eliminate
most of the costly full scale testing presently re=-
quired, In a majority of past investigations of the
sound radiated from ducts, either the radiation
problem has been completely ignoreds »3 or theduct
acoustics and }hg gadia:ion problem have been treat-
ed separately,*»”??” In these studies, the behavior
of the waves inside the duct was determined by speéc~-
ifying some heuristic boundary condition (e.g., a
reflection coefficient) at the duct entrance, In the
latter references this solution was then used to
determine the sound distribution at the entrance
plane of the duct and this was used to predict the
properties of the radiated sound field, In reality
the sound fields inside and outside the duct are
not separate entities (i.e,, they are coupled) and,
therefore, they cannot be properly treated separate-
ly. These "separate' treatments of the interior and
exterior sound fields in the duct radiation problem
undoubtedly introduce errors whose determination
requires comparison with available exact solutions.

In this paper the duct sound radiation problem
is investigated by utilizing an integral solutior/»8
that considers the combination of the interior and

* This research was supported by AFOSR contract
number F49620-77-C-0066; Lt., Col. Lowell Ormand,
Grant Monitor,

** Assistant Research Engineer, Member AIAA,

t Scientist Associate; Present Address: lockheed
Georgia Company, Marietta, Georgia 30060; Member
ATAA,
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exterior sound fields to be a single entity, thus
eiimirating the errors associited with many of the
previously used approaches, Compavrison of the solu-
tions obt2ined using this wethod with exact solu-
tions? and with those of related investigations
should shed soce light upon the applicability of
the analytical approaches utilized in these other
investigations,

The solution aporoach utilized im this study
consists of the numerical solution of a special in-
tegral representation of the solutions of the Helm-
holtz equation for an exterior (i.,e,, to a given
body) domain, The applicabilicy and accuracy of this
solution approach have been demonstrated for two
dinensional~o»11, three dimensional8,12, and axisyn-
netricd,13 geomctries in earlier investigations con=-
ducted under this program where it has been shown
that the developed approach yields unique solutions
at al! wavemumbers.

Solution Procedure

The basis of this method is set forth in great
detail in Ref, 14 and therefore will not be repeated
here, In related studies conducted under this AFOSR
progran the applicability of this approach to the
solution of acoustics probleas involving two dimen-
sional, three dimensional, and axisymmetric geome-
tries has been demonstrated, Since the analytical
developments and results of these studies have been
published elsewhere’»8,9, they also will not be re-
peated here, Instead, soue of the advantages of
this solution approach will be presented, First, as
stated earlier, this method treats the duct radia-
tion problem consisting of the sound generation,
sound propazation and reflection, and the sound
radiation to the outside as a whole without sepa-
rating it into its component parts as has been done
in related investigations, Second, the method can
readily handle the infinite domains encountered in
radiation problems, This is accomplished by employ-
ing a fundamental solution G(P,Q) which satisfies
the Socmerfield radiation conditions in the inte-
gral equation, In the present study the free space
Green's function has been used:

euu—(P,Q)
G(P,Q) = ETION Q)

wvhere, as shown in Fig. 1, Q is a point on the sur-
face of the body S, P is a point in the exterior
domain, r(P,Q) is the distance between these points,
and k is the wavepunber, The third advantage {is
that the computer program developed in a related
investigation9,13 is quite general and is applic-
able to a variety of acoustic radiation problems
involving arbitrary geometries and variable bound-
ary conditions, This computer program can be ap-
plied to different problems by merely changing the
input data,
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Fig. 1. General Geometry of the
Radiation Problem,

It has been shown in Ref, 8 that unique solu-
tions of the external acoustic radjation problem
can be obtained at all wavenumbers by solving the
following integral equation:

G(P @
jsjco(o) -ia—,%‘-*g)- - 6(2,Q) %&3% as,
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where, as shown in Fig, 2, the point P has been
moved to the surface of the body S,n represents an
external normal from the body, £, represents a

normal derivative (G-;), and o is a complex coupling

constant,

Fig. 2. General Axisymmetric Geometry
and 2«0 Profection,

It is shown in Ref, 9 that maximum accuracy is ob-
tained when o = i/k. In its present form, Eq, (2)
contains no non-integrable singularities, a fact
which considerably simplifies its numerical solu-
tion, Thus the solutjon of the entire duct radia-
tion problem has been reduced, with the preseant
formulation, to that of the solution of a surface
integral over the body S,

The problem is further simplified in the present
study by limiting attention to axisymmetric config=

ur?;ions. In this case Eq, (2) is further reduced
to

2@ {new + oo} o

L
-e [ {r 0 + pye0)as,
o (€
- I v {yeo s Leo) e,

= Zn{e(P) + o V(P)}

whera s is the distance .long the 2-D projection of
the body in the p-z plane (i.e., See Fig. 2), and
the influence functions Iy and Ij are given by

o
1;(P,Q) =2 Jo G(P,Q) (cos m eq) deq

n (4)
1,(°.Q) = 2a | i%“‘—‘:& (cos m ) do,
the kernel functions K; and K, are
o
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the forcing functions Fy and F; are
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following the notation of Ref, 15. In the above
notation m is the tangential mode and eP has been
taken as zero ({.e., cos m ep = 1),

Introducing axisymmetry further simplifies the
solution of Eq, (2) to the evaluation of line in-
tegrals on the 2-D projections of the body § in the
p -Z plane as shown in Fig. 2. Also, the formula-
tion is valid for all tangential modes; however,
each mode must be solved for separately.




The required solution is obtained by solving
Eq, (3) for the surface distribution of the acoustic
potential ¢ or the nommal acoustic velocity V,
whichever is unknown. Also, solutions can be ob-
tained for ¢ by using an effective admittance, de-
fined as Y =V/¢ = 30/dn/p, as a boundary condition
over any part of the surface of the body (e.g.,
replace V by $Y in Eq, (3) at the points where Y is
kuown on the body, ',

Once the surface distributions of the acoustic
potential and the normal acoustic velocity are
known on the surface of the body, the radiated
sound field can be determined using the following
integral rcpresentution514 for ¢ and 3¢ in the
field: an

3G(P.Q) _ 200y, -
js_f 0@ F ot - o0 Hhass dr o

(&)
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where the point P is now located in the space sur=-
rounding the body (i.e,, See Fig, 1) so that the
kernel functions are no longer singular, For axisy-
mmetric bodies, Eqs. (8) and (9) reduce to:

L
Je@ k@ - 10,0 v @)s, = 4 52)
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and

(10)
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Results

In the present investigation, the integral
solution technique has been utilized to study the
dependence of the radiated sound field and the
acoustic characteristics of the duct upon the duct
geometry and the acoustic properties of the duct
wall, This investigation has been carried out with
the objective of evaluating the dependence of the
sound field radiated from a jet engine inlet on
the inlet characteristics, and to evaluate the
validity of the analytical approaches and assump=
tions utilized in related investigations, First,
the effect of the length of the duct on the ad=-
mittance values at the entrance plane of the duct
was investigated, The purpose of this study was
not only to show the effect of changing the L/a
(i.e., length/radius) of the duct but also to show
that the admittance is not a constant across the
entrance plane, This is significant as many in=-
vestigations of simflar and related problems assume
the existence of a constant 'reflectioncoefficient"
at this plane, Therefore, the effect of the radi-
ated sound field on the duct acoustics cannot be
properly accounted for, Second, the effect of the
internal geometry of the duct on the radiated
sound field was investigated, This was done to
show that changes in the internal geometry of the
duct result in large changes in the admittance
values at the duct entrance and, therefore, in

large changes in the radiated sound field; a fact
which is often ignored in related studies, Third,
the internal wave structure in the duct was investi-
gated to show that this integral solution technique
can predict both the internal and external sound
fields. In this connection it should be pointed out
again that this solution technique automatically
accounts for the coupling effects between the in-
ternal and external sound fields, Fourth, the radi-
ated sound fields for two, dimensionally similar,
acoustically lined duct configurations (i.e., a
straight duct and an engine inlet) are compared to
show that optimum admittance values for liners, de-
termined from the study of their effectiveness in a
straight duct, do not necessarilly carry over to the
core complicated inlet configurations,

In this study, the surface distributions of the
unknowns of the problem (i,e., the acoustic poten-
tial and/or the normal acoustic velocity) are ob-
tained from the numerical solution of Eq, (3). Since
the unknown functions $(Q) or V(Q) appear in the in-
tegrands, it is necessary to solve a square matrix;
thus, the required computing time increases roughly
as the square of the number of points taken on the
surface of the body S, In a typical run on the
Georgia Tech CDC Cyber 70/74 computer,l40 seconds of
conputing time were required to solve for the sur-
face values of either $ or V at 53 points on the
body.

To obtain values for § and V in the far field,
Egs. (10) and (11) are solved by simple numerical
integration, The time required for this computation
is roughly proportional to the number of points in
the field and the number of points on the body, In
a typical run, 70 seconds of computing time was re-
qQuired to calculate both § and V at 57 points in
the field with 53 points on the body.

To determine the dependence of the admittance
a2t the duct entrance plane on the duct length, these
admjttance values were computed for hard walled
straight ducts having different L/a values, as shown
in Fig. 3.

Exit Driver
Plane

D

fe——- L —————>

Fig. 3. Geometry Used for Straight Duct
Computations,

In this case, driving consisted of a unit acoustic
velocity (V=1) across the driver face, The com -
puted admittance values at the duct entrance plane
are plotted for two non~dimensional wavenumbers
(i,e., ka = 1 and 3) in Figure 4, Also noted for
conparison are_the "classical" values for flnnged)6
and unflangcdl7 pipes. These results indicate that
even for plane wave sound excitation the admittance
at the duct entrance plane varies with the trans-




verse dimension but it does not depend upon the
ducts length-to-radius ratio, at least for the in-
vestigated range of L/a and ka values,
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Fige 4. Adnmictance at the Exit Plane of a
Straight Duct with the Classical
Values for Flanged and Unflanged Pipes,

To detemine geometrical effects, the admittance
at the entrance plane of a hard walled inlet config-
uration’® (i.e., See Fig. 5.), with L/a = 2 was also
calculated assuming the same type of source excita-
tion for comparison, These results are plotted in
Figure 6, When compared with the corresponding re=-
sults for a straight duct of the same basic dimen-
sions (See Fig, 4.) it is seen that the admittance
values change siguificantly, This is but one indica-
tion of the importance of the need to properly
account for the internal geometry of the duct when
investfgatiug duct radiat{on problems,

The internal wave structure was also investi-
gated for two hard walled, straight ducts to de-
temine its dependence upon the characteristics ox

ka = 3,0
1,0 1.6
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Fig. 5. Inlet Geometry (L/a = 2)
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Fig. 6, Admittance at the Exit Plane of
the Inlet (L/a = 2)




the sound source, The resulfs are presented in

Fig. for two different drivers, one having a
constant unit normal acoustic velacity (i.e,, V=1)
and the other a cosine distribution (i.e., V=cos
(mp) where 0 < p < 1), at the sound source plane,
for the case where ka = land m (the tangential mode
nunber) equals zero, These results show that the
difference between the sound sources quickly dis-
appear with increasing distance from the source
plane, as expected for low values of the non-dimen=-
sional wavenumber ka, The results for two addition-
al cases are also presented;
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Fig. 7. Radial Distributions of the Acoustic
Potential in a Hard Walled Straight
Duct (L/a = 3, ka = 1, m = 0)

in Fig. 8 the same two sound sound sources are used
for the higher wavenumber of ka = 2 while {n Fig, 9
a sound source with a normal acoustic velocity dis-
tribution of V = sin (prr) and a tangential mode
number m = 1 is used, All of these results indicate,
in agreement with basic acoustics, that the finer
details of the sound source are 'washed out" within
a length on the order of ka from the sound source
plane,
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Fig, 8, Radial Distribution of the Acoustic
Potential in a Hard Walled Straight
Duct (L/a = 3, ka = 3, m = 0)

Finally, the radiated sound fields from both a
straight duct and an inlet configuration were com=
puted and compared for both lined and unlined walls,
The values used for the wall admittances and the
wavenumbers were chosen to be the same as thosc
used by Zorumski in Ref, 19 so that comparisons
could be made, Two different liners were run; a
constant admittance liner and a segmented liner.

In the case of the straight duct the results do not
show the same difference in the radiated sound pres-
sure level between the segmented and constant ad-
mittance liners (See Fig., 10.) as did Zorumski (See
Fig. 11.).
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Fig. 9. Radial Distribution of the Acoustic
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J R
40 60 80 100 120
SPL (dB)
Hard Wall

= = = = = Segmented Liner

— Constant Liner

Fig. 10. Far Field (50a) Radiation From A
Strafght Duct (L/a = 2),

100 120
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Fig. 11, Far Field Radiation From A Straight
Duct as Per Ref, 19 (L/a = 2).

To investigate the effect of geometry, the inlet

'configuration shown in Fig. 5 was run with the same

two liners at the same non-dimensional wavenumbers.
The opposite trends to those predicted by Zorumski
were noted (See Fig, 12.); that is, that the seg-
mented liner is superior to the constaunt admittance
liner in reducing the radiated sound pressure levels,
Thus, it is concluded that geometrical details can
significantly affect the characteristics of the
sound power radiated from dimensionally similar ducts
(i.e., ducts having the same L/a ratios.).

40 60 80 100l 120
Hard Wall SPL (dB)
_____ Segmented Liner
—— Constant Liner

Fig. 12, Far Field (50a) Radiation From An Inlet
(L/a = 2).
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Appendix D

Determination of the Admittance of the Liner




Nomenclature

orifice area

speed of sound

orifice diameter

frequency

resonant frequency of the resonator
wave number

backing depth

effective orifice length
normal

acoustic pressure

orifice length

cavity volume

acoustic velocity

specific admittance of liner
effective admittance of liner
specific impedance of liner
absorption coefficient

open area ratio of the liner
open area ratio of a resonator
density

coefficient of viscosity
3.1415926

acoustic potential

specific resistance ratio

specific reactance ratio




The liner, which was employed in the preliminary testing for this
AFOSR contract, was originally developed for another program. Since it

consists of a matix of Helmholtz resonators it is highly tuned; that is, it has

a rather sharp absorption peak. As discussed in Section II, the liner was
designed for use above the IT cut-off frequency and thus shows little
absorption below this frequency where most of the runs for this program will
be made. Thus the liner must be retuned so that it becomes effective in the
frequency range where most of the testing will be done. In this appendix
basic liner theory is reviewed and a relatively simple redesign of the liner is
proposed to make it more effective in the frequency range of interest in this
research program.

For input into the computer program certain values must be known.
First, the sound pressure level at the "driver plane" must be known.
Experimentally this corresponds to the nozzle-liner plane and can be directly
measured. The other value which must be known is the effective admittance

of the liner defined as

[o1]
y A
an/p (D-1)

where ¢ is the acoustic potential and §§E is the normal acoustic velocity
defined with an outward facing normal.
In Reference | equations are given to calculate the specific acoustic

impedance of an array of helmholtz resonators, that is

Z=9g-1i%x (D-2)




where the specific resistance ratio & and the specific reactance ratio yx

are defined as

1/2

4 o)
6 = ¥ (ipH a + /q)

2nfoLsFE(i _ 5

= £, £ )

For the definitions of the variables used here see Figure D-1. It will be noted

here that these definitions assume an inward facing normal. The resonant

frequency of the resonator is defined as

e LS RS S B
o 2n VLEFF 2n Lo

EFF

and the effective orifice length is found to be

4,EFF-—-t+0.85d(1-0-7‘V5)

The specific acoustic admittance is defined as
Y = -;— = v/p
(D-6)

and since the acoustic potential and the acoustic pressue are related by

paiszkcp
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the effective admittance is found to be

y = -ipc kY = =ipc k —Q;—ixz—
CRD

(D-8)

where the minus sign is due to the switch from inward to outward facing
normal for the acoustic velocity.

The liner is most effective in damping acoustic waves at its resonant
frequency which for our case is ~ 740 Hz. This is above the 1T mode of the
duct which is ~ 695 Hz and thus the full effectiveness of this liner is never
achieved. A plot of the absorption coefficient of the liner, o , vs. frequency
is presented for the present liner configuration in Figure D-2. Here the

absorption coefficient is defined as

R
L)+

There are two paths that may be taken to obtain test results at
maximum liner efficiency. The first method is to purposely drive a IT wave
by using two drivers driving 180° out of phase. This will create a transverse
acoustic wave structure in the tube and the results can then be compared by
using a mode number of | (instead of zero) in the computer programs. The
other alternative is to redesign the liner such that its resonant frequency is
reduced below the IT mode cut-off frequency. This can be accomplished by
increasing the backing distance, L. By increasing L from 0.5" to 0.775" the
resonant frequency of the liner drops to~ 685 Hz, below the 1T mode. If the

diameter of the backing cavity is also increased from 1.0" to 1.25" the
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Figure D-2, Absorption Coefficient vs, Frequency
For the Present Liner Configuration,
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resonant frequency of the liner can be further reduced to~550 Hz. Thus, by
simply drilling out the backing cavity the tuning frequency of the liner can
be altered enough so that its absorption peak is well below the 1T cut-off
frequency; that is, in the range of frequencies that will normally be used for

testing in this research program (i.e., 300-650 Hz).
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When considering the radiation from an open duct it is found that
some of the energy is radiated and some reflected (with a phase shift) back
down the duct. It is common to associate an effective admittance
(impedance or reflection coefficient) at the exit plane with this
phenomonon. In this note three methods for obtaining an effective
admittance are compared.

The first method follows the analyses of Helmholtz and Rayleigh in
whick the end of the duct is approximated by a piston radiating into a half
space from an infinite baffle. In this analysis the classical integral
representation of the solutions of the Helmholtz equation is solved with
certain approximations. Results for this configuration (commonly known as a
flanged pipe) using this method are presented in Reference 1.

The second method consists of the solution of a Weiner-Hopf type
integral equation. In this analysis the duct is assumed to be semi-infinite in
length and infinitely thin. Results for this type of analysis are presented in
Reference 2. This configuration is commonly known as the unflanged pipe.

It is interesting to note that these two configurations represent the
logical limits of this type of problem in that the first can be viewed as an
infinitely thick duct while the second is infinitely thin. Neither of these
configurations can account for the case of a duct of finite iength, however.

The third method employs a special cylindrically symmetric integral
representation of the exterior solutions of the Helmholtz equation.3’“’5
Using this method it is possible to calculate the acoustic pressure and
velocity anywhere in the external field - including the inside of the duct
«tself. From these values inside the duct an effective admittance can be

calculated using a simple standing wave analysis like that used in an
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impedance tube. All that is required for this method is knowledge of two
complex acoustic quantities (i.e., amplitude and phase) at two points in the
duct.

The geometric restrictions on the integral technique are that the duct
(or any radiating body) must be a finite (i.e. no infinitely thin walls) closed

body. A sketch of the duct used in this analysis is presented in Figure 1.

To determine if the length of the duct makes a significant difference
in the admittance values at the duct entrance computer analyses of ducts of
varying lengths were run (i.e. L/a = 1,2,3) at two different non-dimensional
wave numbers (i.e. ka = 1 and 3). Since the method is capable of calculating
the actual radially varying admittance across the exit plane of the duct,
these are presented in Figure 2. The driver consisted of specifying a unit
normal acoustic velocity while on the rest of the body the admittance was
specified as zero. As can be seen the length of the duct L has little effect on
the admittance, defined as the ratio of the component of the acoustic
velocity normal to the surface to the acoustic pressure. Also noted for the
sake of comparison are the values for the flanged and unflanged pipe at the
appropriate values of ka.

Computer analyses of a duct with L/a = 3 were then done with the
same boundary conditions specified as above for various values of ka. For
each case the acoustic potential and velocity were calculated at 11 equally
spaced points along the centerline of the duct from Z = 1 to Z = 2. A
standing wave analysis was then done employing a Least-Square method to
solve the overdetermined system of equations. The results of these analyses

are presented in Figure 3 along with the values for a flanged and an

51




*£139wo099 3ong IYBTRIlg *1 2InITJ

. | G
- mlo Ol oc¢

NY

ANVId

43AA J 11X3

NOILVNIWY3L
TV IIY3IHLS




*s3ong 3ySTRIIg JO BUE[g ITXF Y3 3Ie Ioue3ITwpy °*7 2Ind1y

. o ) | v o w _ “.

o g0 S0 ¥ T O ot SO0 90 ¥0 20
v.o- o.o<o-

clo

910 o)}
Q€= =/
o€ =8y O.Nnm\n_..llll.ll. Ol = ey
O & B/ Somndidia




e

12 T T T 120
UNFLANGED
FLANGED — — -
1.0 FsTANDING WAVE O REAL 1 100
ANALYSIS -
o8 1 80
06 1 60 f
j Y.
P 4 |
04 4 40
CENTER OF ® REAL
\ EXIT PLANE @ IMAG.
02F 4 20
-
2 8
oo e 3 o 1 00 :
-
-02 L . . -20 i
00 10 20 30 40 !

ka
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unflanged pipe. Similar analyses were done off the centerline of the duct;
however, no significant differences in the computed values for the
admittance at the entrance plane of the duct were found. Also ncted for
comparison in Figure 3 are the values of the admittance calculated on the

centerline of the duct at the exit plane.
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